
1 PRINCIPLES OF HEAT TRANSFER

This chapter is intended to discuss different energy transport mechanisms which are usually c1assi-
, tied as conduction, convection and radiation. From the second law of thermodynamics we know

that the heat flows whenever there is a temperature difference, i.e., temperature gradient. The
knowledge of the temperature distribution is essential to evaluate the heat flow. The temperatlJrt'
distribution and the heat flow constitute two basic elements in the design of thermal equipments
such as boi:ers, heat exchangers, nuclear reactor cores, etc. Since in nuclear reactors, under nor­
mal opemting conditions, radiation heat transfer has limited applkation, the present discussion
will be mainly focused on conduction and convection heat transfers.

1.1 Mechanisms ofHeat Transfer

I. Conductio.'"

The conduction is defined as the transfer of energy from one point of a medium to an other under
the influence of temperature differences. On the elementary part!clt: level, the \'oonduction is visual­
ized as the exchange of kinetic energy between the particles in high and low temperature regions.
ThereforE;, the conduction is attributed to the elastic collisions af molecules in gases and liquids,
to the mation offree electrons in metals, and to the longitudinal oscillation of atoms in solid insu­
lators of electricity. A distinguishing characteristic of conduction is th~t it takes place within the
boundary of a illcdium, or across the boundary of a medium into an other medium in contact with
the first, without an appreciable displacement of the matter.

On the microscopic level, the physical mechanisms of conduction are complex. Fortunately, we
will consider the conduction heat transfer at a macroscopic leve! and use a phenom~nologicat law
based on experiments made Biot and formulated J.B. Fourier in 1882. This law can be illustrated
by considering a simple case, a waH of thickness L, surface area A and whose faces are kept at
temperatures t1 and t2 as shown in Fig. 3.1. t1 is greater than t2 . Under these conditions, heat flows
from the face of high temperature to the face of low temperature. According to Fourier's law of
heat conduction, the rate of heat transfer in the x-direction through the wall element, dx, located
at x is proportional to:

" the gradient of temperature in that direction, dt/dx, and
• to the surface area normal to the direction of heat transfer, A.

Therefore, the heat transfer rate is given by:

(3.1)

where k is the constant of proportionality and it is called the "thermal conductivity"; it is a prop­
erty of the material. The minus sign appearing in Eq. 3.1 is due to the convention that the heat is
taken to be positive 'in the direction of increasing x and also ensures that heat flows in the direc­
tion of decreasing temperature, thus satisfies the second law of thermodynamics. As sketched in
Fig. 3.2<:, if the temperature decreases with increasing x, then the gradient is a negative quantity



3.2

y

,

---.dx-x

L

x

Figure 3.1 Heat flow across a
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Figure 3.2 Sign convention for the direction of heat in the Fourier law.

and the minus sign ofEq. 3.1 ensures that qx is positive. Conversely, ifthe temperature increases
with increasing x (Fig. 3.2b) the gradient is positive and qx is negative. In either case heat flows in
the direction of decreasing temperature.

>

Dividing both sides ofEq. 3.1 we obtain:

q" = qx =_kdt
x A dx (3.2)
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where the quantity q; is called the heal flux. The dimension of heat flow rate is energy per unit
time, i.e., lis whereas the dimension of dl and dx are Kelvin (1<) or degree Celsius (0C) and meter
(m), respectively. Consequently, the unit of thermal conductivity is:

•

and the unit of heat flux is:

k ; J 1 If'- - or--
S mK mK

Assuming a linear temperature variation in the wall illustrated:n Fig. 3.1, Eq. 3.1 can be easily :11­
tegrated:

te obtain:

or

f L qx dx =_ffo kdl
OAf,

(3.3)

(3.4)

(3.5)

' .. Since II > t2, q; is a positive quantity. Therefore, it is in the positive direction. If t2 > tl, then
q; would be negative and heat flow would be in the negative x direction.

Eq. 3.1 or 3.2 give one dimensional form ofFour:er's law of heat conduction. In general, the tem­
perature in a boC:y may vary in all three coordinate directions, i.e.,

t =t(x,y, z, ,)

where t is the time. Therefore, the general form ofFouner's law is'

--> -->
q"= -k"'V t

(3.6)

(3.7)

--> -->
where q" is the conduction heat flux vector and V is the gradient of the scalar temperature field.

-->. . "Accordmg to Fig. 3.3, q can be written r.s:

-->
and -kV as:

~, If~ ,,~ II ......

q = qx i +qy j +qz k

--> --> at -: at --> at
-kV t=-k I --kJ --kk-ax oy az

(3.8)

(3.9)
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Comparing equations 3.8 and 3.9 we conclude that:

•

" __kat." at " atq.- ax' qy=-kay ; qz=-kaz

z

'1;' if"

q;'
----'--'----to.~--

y

(3.10)

Figure 3.3 Three components of
the heat flux.

........ ....
i, j and k are unit vecters in the x, y and z directions. In the above discussion, the medium is
assumed to be isotropic.

The thermal conductivity defined with Eq. 3.1 is a property of a materi<J.l and is determined experi­
mentally. From gases to highly conducting metals, k varies by a factor of about 1.5x1C" The nu­
merical value of the thermal conductivity is an indication of how fast heat is conducted through
the m3.terial. Thermal conductivity varies with temperature. Only for limited number of materials,
the thermal conductivity depends weakly on temperature. In many others, this dependence is
rather strong. Table 3.1 gives the thermal conductivity of selected materials.

Table 3.1 Thermal conductivity of seleCted materials
(at 25°C if not specified)

Material kin W/mK Material kin W/mK

Copper

Aliminum

Steel

Stainless steel, 18-8

Zirconium

Uranium metal at 500°C,
Uranium dioxide at 600 °C

386 Uranium dioxide at 1200 "C

204 Uranium dioxide at 1800 °C

64 Water (light and heavy)

IS Air

13

30

4

2.6

2.2

0.611

0.027
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II. Convection

Conv~tion is the term .combl~ation of condu~ ~sed for heat transfc, roscop.c (bulk) . ,lIOn due to the I er mechanism whi h~t~e~~:n~~: ~~::::;;~~~n:::'T:~~:a:~:~a~~~:~ti:dt:::~~::'p~~~~ebeeause of a
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A Igure 3.4 Canvection heat transfer to a flow over a heated wall
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stream velocity, the velocity of the fluid decreases as we get closer to the wall. This is due to the
viscous effects of the flowing fluid. On the wall, because of the adherence (nonslip) condition the
velocity of the fluid is zero. The region in which the '/elocity of the fluid varies from the free
stream va!t;e to zero is called "velocity boundary layer." Similarly the region in which the fluid
temperature varies from its free-stream value to that on the wall is called the "thermal boundary

• layer." Since the velocity of the fluid at the wall is zero, the heat must be transferred by conduc­
tion at that point. Thus, we calculate the heat transfer by using the Fourier's heat conduction law
(Eq. 3.1 or 3.2), with thermal conductivity of the fluid corresponding to the wall temperature and
the fluid temperature gradient at the wall. The question at this point is that: since the heat flows
by conduction in this layer, why do we speak of convection heat transfer and need to consider the
velocity of the fluid. The short answ~r to this question is that the temperature grad:ent of the fluid
on the wall is highly dependent on the flow velocity of the free-stream. As this velocity increases,
the distance from the wall we travel to reach frec stream t~lnperature decreases. In other words,
the thickness of velocity and thermal boundary layers en the wall decreases. The consequence of
this decrease is to increase the temperature gradient of the fluid at the VIall, i.e., an tncreasc in the
rate of heat transferred from the wall to the fluid. The effect of increasing frec ~tream velocity on
the fluid velocity and temperature profiles close to the wall is illustrated in Fig. 3.4. Note also that
the temperature gradient of the fluid on the wall increases with increasing free stream velocity.

Sir Isaa:: Ney,10n experir.lentally fo~nd that the heat flux on the wal! is proportional to (I w -. t~) :

qc (' )-- , -IA w ~
(311)

Introducing a proportionality constant h, he proposed a law known as Newton's law ofcooling:

(3.12)

where h is the convection haat transfer ccefficient or the film conductance and A heat exchange
surface. The unit of h is W/m2 K or Jlsm2 K. Table 3.2 gives the crders of magnitude of convec­
tive heat transfer coefficients.

Table 3.2 Order of magnitude of convective heat transfer coefficients

Fluid and flow conditions h W/m2 K

Air, free convection

\\'ater, free convection

Air or superheated steam, forced convection

Oil, forced convection

Water, forced convection

Liquid sodium, forced convection

Boiling water

Condensing steam

5-25

15-100

30-300

60-1,800

300-15,000

10,000-100,000

3,000-60,000

3,000-100,000
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From the above discussion, we conclude that the basic Jaws of heat conduction must be coupled
with those of fluid motion to describe. mathematically. the process of convection. The mathemati­
cal treatment of the resulting system ofdifferential equations is very complex. Therefore, for engi­
neering applications, the convection will be treated by an ingenuous combination of mathematical
techniques, empiricism and experimentation.

• Ill. Radiation

It has been expenme:ltally observed that a body may loose or gain thermal energy in the abs~nce

of a physical transporting medium. For example, a hot object placed in a vacuum chamber with
cooier walls is observed to loose thermal energy. This loss of energy is due to the electromagnetic
wav~s emissions (or photons) known as therm'll radiation. Regardless of the form of the matter
(solid, liquid or gas) this emission is caused by the changes in the electrons configuration of the
constituent atoms or molecules. In the above example, radiation heat transfer could aiso occur be­
tween the ho! object and cold chamber walls even if the chamber was tilled with a sufficiently
transparent continuous medium such as air. The wavelength of the electromagnetic radiation is
comprised between 10-1

~m and 10-2 ~m. The maximum flux at which radiation may be emitted
from a surface is given by the Stefan-Boltzmann law:

Wlm 2 (3.13)

where T[ is the absollJte ~empefatur~ (in K) c.fthe surface a:td cr is the Stefan-Boltzman constant
(IT = 5.57 x 10-3 Wlm2K 4) • Eq. 3.13 applies on!y to an ideal radiator or "Black body'" In prac­
tice, the radiant surfaces do not emit thermai energy ideally. To take into account the "gray" na­
ture of the real surfaces, a dimensionless factor, E, called emissivity is introduced. Therefore heat
flux emitted by the surface is written as:

t) .14)

with 0 < € S 1. IfE== I, we obtain an ideal radiator.

If heat is transferred by radiation between two gray sl!rfaces of finite size, as illustrated in Fig. 3.5,
the rate of heat flow will depend on temperatures T1 and T2, on emittances 1::[ and 1::2 , and on the

qr
Figure 3.5 Radiation heat
transfer between two finite
gray surfaces.
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geometry of the system. From Fig. 3.5 it is obvious that some radiation originating from object 1
will not be intercepted by object 2, and vice versa. In such a case, the determination of the heat
flow rat~ is rather complicated. Usually we write that:

, (3.15)

where q, is the net radiant energy interchange from object 1 to object 2 and F I2 is a transfer factor
which depends on emittances and geometry. For an annular space between two infinite cylinders
or between two spheres F 12 is given by:

1
F n =---'--­

1 A, ( I I'ii" + A
1

i1 - )
(3.16)

where ", and "2 are the emissivities of objects i and 2, respectively. IfA I ~ A 2 , the radiant net
energy exchange between concentric cylinders is given by:

(3.17)

and corresponding heat flux:

(3.18)

In many engineering applications, :t is convenient to expn:ss th~ net energy exchange as:

(3.19)

Comparing Eqs. 3.17 and 3.19, we conclude that the "radiation heat transfer coefficient," h, for
concentric cylinders when AI:; A 2 is given by:

(3.20)

With this approach, we have modeled the radiation heat transfer in a manner similar to convection
heat transfer. It should be noted that h, depends strongly on temperature, while the temperature
dependence of the convection heat transfer coefficient is generally weak.

In many engineering problems we may consider simultaneously convection and radiation heat
transfer. In such a c~se the total heat transfer from the surface is written as:

(3.21)
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1.2 Conduction Heat Transfer

In this chapter, using the Fourier's heat conduction law, we will establish a general equation for
the conduction of heat in solids. This equation will be presented in rectangular coordinate~ as well
as in polar cylindrical and in spherical coordinates. We will also discuss the most frequently en­
countered boundary conditions. Given the introductory nature of this section, the application of

6

the general conduction equation will only be limited to one dimensional steady state and transient
problems.

1.2. 1 General Conduction Equation

In studying heat conduction problems, the main objective is to determine the temperature distribu­
tion in a solid as a function of space and time, t(x,y,z, 'f), for a given set of initial and boundary
conditions. Once this distribution is known, the heat flux at any point of the selid or on its surface
can ea~i~y be determined. In the following, using the energy conservation principle and the
Fourier's heat conduction law we will establish the general heat conduction equation. The solution
of this equation for a given set of initial and bcundary conditions will allow 'lS to determine the re­
quired temperature distribution. To derive the conductior. equation, consider the solid medium
shown in Fig. 3.6 and select within this solid a differential control volume in the shape of a

P(X,y,z)

~x -il__--(I
I

i
!

---+--t~ I • P
qJ' I

......L-.__._.__. -_.
............

;/
Figure 3.6 Control volume for conduction analysis in rectangular coordinate
system.
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parallelepiped of dimensions dx, dy, dz in the x, y, z directions as i1Iustrated in the same figure. In­
dicating by:
q% and q.<t-d% heat entering and leaving the control volume in the x-direction,
qyand qy+<ly heat entering and leaving the control volume in they-direction,
qz and qz+dz heat entering and leaving the control volume in the z-direction,

• Qg hear generation in the control volume, and
U internal energy of the control volume
the energy conselVation principle applied to the control volume can be written as:

(3.22)

Using the Fourier's heat conduction law, we can write that:

we can also write that:

qz =_(k~t) dxdzdt
uZ z

q.<t-d% =-(k~~) .<t-d%dydzdt

qy+<ly = _(k~t) dxdzdt
Y y+<Iy

qz+dz = _(k~t) dxdydt
uZ z+dz

Qg =q'" (x,y, z, t)ct:dydzdt

oU ot
Ot = cPotdxdydzdt

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

'"where q (x,y, z, t) is the heat generation rate per unit volume, and c and p are the specific heat
and specific mass, n,spectively. Eqs. 3.26, 3.27, 3.28 , after using Taylor series expansion and ne­
glecting the terms of second and higher orders, can be written as:
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( al) a ( al)qr+dx=- kax "dydzdt- ax kay xdxdydzdt,

( al) a( al)qy+dy '" - ka dxdzdt - ;n, ka dxdydzdt,
y y v)' y y

( al) a ( al)qz-+<lz = - k-
a

dxdydt - -a k-
a

dxdydzdt .
z z z z

3.11

(3.31)

(3.32)

(3.33)

Substituting Eqs. 3.23-3.25 and Eqs. 3.29-3.33 into Eq. 3.22 we obtain the general conduction
equation:

(3.34)

The conductivity, k, can be a function of space und temperature. However, we will assume that
the conducting medium is homogeneous and isotropic. Under this condition, the thermal cor.duc­
tivity depends only on temperature and because of this dependence in Eq. 3.34 it is left in the de­
rivatives. If the conductivity is independent of temperature, i.e., position, Eq. 3.34 becomes:

(3.35)

When there is no internal heat generation, the above equation reduces to:

(3.36)

where a = k/cp (m'/s) is a thermophysical property of th;l material and it is called "the thermal
diffusivity." This equation is called Fourier's equation.

For steady state conditions, Eq. 3.35 reduces to:

(3.37,

which is known as Poisson's equation. Finally for steady state conditions without heat generation
Eq. 3.35 becomes: .

(3.38)

which is Laplace's equation.



3.12

Eq. 3.34 can also be obtained from general conservation equation given in Chapter 2 (Eq. 2.5) re­
peated here for conv~nience:

ow'" ...... :
o~ +'\7 .1jI v +'\7 . J,¥ -S,¥ = 0 (3.39)

>where

3.7 and interpreting in

: as the heat generatIOn rate q''',

IjI : property per unit volume of material,

: flow of property per unit ofarea and time through the
control surface bounding the control volume,

S'¥ : generation of property per unit volume and time,

V' : flow velocity.

In ~he present case, the body is at rest, i.e., V'= O. Considering Fig.
Eq.3.39

IjI : as the internal energy, pu,

: as the heat flux, and

J,¥ =ij" =-kV
v=o
If/ = p!i

S = q'",.
Figure 3.7 Control volume to be
used with general local conserva­
tion equation.

we obtain:

op U ri ...11at'"+v . q -q'" =0 (3.40)

Using the general form of Fourier's law (Eq. 3.7) and knowing that:



•

Eq. 3.40 hecomes:

apu at
--=cp-
at at

-to -. '" atV.kV.t+q =cPat'

3.13

(3.41)

(3.42)

This equation is the same as Eq. 3.34.

The derivation of the general conduction equation can also be <:arrierl out i'1 cylindrical coordinate
system (r, e, z) defined in Fig. 3.8a anrl spherical cQordinate system (r, <p, e) defined in Fig. 3.8b.
The resulting equations are:

z

a) Cylindrical, (r,B,z)

t = t(r,e,<p)

y

-.'-.

b) Sphcric~l, (r, f{J, 0)

Figure 3.3 Different coordinate systems.

Cylindrical coordinates:

1 a ( at) 1 a(at) a(at) '" atrar krar + r2ae kae + az kaz +q =cPat

Spherical coordinates:

(3.43)

(3.44)la(k2at) 1 ark' atl 1 a (kat) '" atr2ar r ar + r2sin<jl a<jl\.. sID<jla<jl) + r2sin2<jlae oe +q = cPat .

1.2.2 Initial andBoundary Conditions

The evaluation of the constants that appear in the solution of the heat conduction equation re­
quires the use of boundary and initial conditions. In the following, we will discuss the most fre­
quently encountered boundary and initial conditions.
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I. Initial conditions

In transient heat conduction problems, the temperature distribution in the body under observation
should be known prior to the initiation ofthe transient. For example we will specify that at r = 0 ,

# the temperature distribution in the body is given by t(x,y.z).

1/. Boundary conditions

The boundary conditions ~pecifies the thermal conditions applied to the boundary surfaces of the
body. For example, on the boundary surfaces we may specify the temperature, the heat flux or the
heat transfer to a fluid by convection.

I. Prescribed boundary temperature condition

The temflenHure on the boundary sllrfaces of the body, t. , is imposed as illustrated in Fig. 3.9.
This temperature may be uniform and constant, a function of spa,;e and time or, a function of
space only or time only.

t

~I
,~

x=L x
Figure 3.9 Prescrib~d boundary
temperature.

2. Prescribed boundary heatflux condition

The heat flux across the boundaries is specified. This flux may be uniform and constant, a function
of space and time or, a function of space or time only. The heat flux may be removed from the
boundary surface (Fig. 3.10a) or supplied to the boundary surface (Fig. 3.10b).

If heat is removed from the bcundary (Fig. 3.10a), the application of the macroscopic energy con­
servation principle (Eq. 2.23) to a very thin layer at the boundary (see insert in Fig. 3.10a) yields:

(3.45)

or

(3.46)

~" 4 H

where q cd is the conduction heat flux and q 0 is the prescribed heat flux. Using the Fourier's law
of conduction, we obtain:
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ij:; q:' -" I -"q,. q.
THIN CONTROl ~
VOWM"

Ii "
(8) x

i

(S)

x

3) Heat removal from boundary b) heat addition to bound31y

Figure 3.10 Prescribed heat flux at the boundary.

~" rat)'"
q cd =-k~'ax I

we obtain:
... ( at)'" ...... "
n\'-"ax I+n·qo =0

~ -+ -Y ~II 1/ •

Since n 1 • i = -I alld n 2 • q 0 = q0 , the above equation becomes:

(at\ "
-k -a ) =qo·

x' s

If the heat is supplied to thc boundary (Fig. 3.10b), the same reasoning as above yields:

k(2.i) = "ax s go

"If the boundary surfaces are well insulated, i.e., go = 0, Eqs. 3A9 and 3.50 are reduced to:

(2.i) =0
ax s

(3.47)

(348)

(3A9)

(3.50)

(3.51)

3. Convective boundary condition

A frequently encountered situation is the one in which the bounding surfaces are in touch with a
fluid where heat is transferred from surfaces to fluid or vice versa as illustrated in Fig. 3. II. If the
heat is transferred fIpm boundary surfaces to the fluid (Fig 3. Ila), the application of the energy
conservation principle to a very thin layer at the boundary yields:

(352)
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SOLID S SOLiD

I
THNCONTR.Ol

ii VOW" iit t t ii, ii, t~
(S) I FLUID FLUID

FLOW FLOW• ii, ii,

tI t q:; il::
-" ij" I9.. ~ ~

(S)

-" ~ -" -- t ~ t ij;:TI1... CONTROL qnI ~ q"YOWME ,~

iT I iii!2 ... ...
.x .x

a) Heat iransfer to fluid b) Heat transfer from fluid

Figure 3.11 Convection at the boundary surfaces.

~H ~n

where qcd is the conduction heat flux and qcv convection heat flux. Using the Fourier law of
conduction (Eq. 3.47), Eq 3.52 becomes:

. - or

-k(£i.) = ..ax S qcv

The above equation with theNewton's cooling law (Eq. 3./2) can be written as:

(3.53)

(3.54)

(3.55)

If the heat is transferred from fluid to the boundary surfaces (Fig. 3. 1Db), energy conservation
principle gives:

k(2..t...) = ..ax s qcv..
In this case qcv is given by:

Substituting the abov.e equation into Eq. 3.56 we obta1n:
I

(3.56)

(3.57)
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4. Interface oftwo medium with different conductivity

When two media with conductivity k, and k, have a common interface as illustrated in Fig. 3.12,
the heat flux at this interface for each medium should be equal, i.e.,

•
t

1
Inte:iace

q "i1
-Mi\l----

2

x
•

Figure 3.12 Interface of two me­
dium with different conductivities.

" "

or using the Fourier's law of conduction (Eq. 3.1) we obtain:

(3.58)

(3.59)

If the contact resistance between the two media is zero, then the temperatures on both sides of
the interface are equal, i.e.,

(3.60)

(3.61)

However, in practice the contact resistance is different from zero. In this case, representing the
conductance at the interface by h., the temperatures on both sides of the interface are related by:

q;', =q;; =hg(tu -t2/) .

.
The contact conductance will be discussed in details in chapter on "Heat Removal from Nuclear
Reactors."

1.2.3 One Dimensional Steady State Conduction
I

In this section, we will discuss heat conduction problems where only o!le dimension is enough to
describe the temperature distribution. For example, the heat flow in a wall of finite thickness in x­
direction but infinite extent in the y- and z-directions or heat flow in a long cylinder with angular
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symmetry constitute one dimensional heat transfer problems. For a one-dimensional steady state
conduction heat transfer, the general conduction equations (Eqs. 3.34, 3.43 or 3.44) are written
as:

Rectangular coordmates:

•

Cylindrical coordinates:

Spherical coordinates:

a (kat) '"- - +q =0ax ax

!~(kr2..!..) + '" = 0rar ar q

1 a ( at) '"-- kr2
- +q =0

r2 ar cr

(3.62)

(3.63)

(3.64)

1.2.3.1 Conduction Heat Transfer in a Slab

I. Plalle wall with prescribed boundary temperatures

As illustrated in Fig. 3.13 the wall has 11 finit~ thickness (L) but intlnite extent. Both faces, located
~J x =0 and x = L are kept at specified temperatures t; llnd t, , respectively. There is no heat

t,
'~

/,
k = Canst.

0
I

-L

x
Figure 3.13 Slab with prescribed
temperatures.

sources within the slab. Under these conditions Eq. 3.62, for a constant conductivity, reduces to
alf
----- =0 (3.65)ax2

with boundary conditions:
x=O
x=L

(3.66)
(3.67)
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The solution ofEq. 3.65 is:

I=Ax+B (3.68)

A and B are arbitrary constants. Application of the boundary conditions allows us to determine the
, values of the constants. The substitution of these values into Eq. 3.68 yields:

') 12 -1[I,x =11+ L x. (3.69)

The heat flux through any plane in the wall perpendicuiar to the x-axis can be determined by using
the Fourier's law ofconduction:

q" = -kE..!. = kl[ -12

ax L
(3.70)

II. Multilayer wall with prescribed boundary lemperalures

Figure 3.14 illustrates a wall of two layers. The thickness of the walls are L, and L2 and the con-

t J

•x

Figure 3.14 Multilayer wall.

I--- L,-+-L,-1
ductivity are k, and k, , respectively. The outside temperatures are I, and I" .espectively. we
wish to determine the heat flux through the wall.

Since the steady state conditions exist, the heat flux through the layers is constant. The application
ofEq. 3.70 to layers 1 and 2 yield:

" k 12 - 13q = 2 L,

or

or

(3.71)

(3.72)
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Upon addition of the above equations we obtain:

•
Calling:

Eq. 3.73 can then be written as:

(3.73)

(3.74)

(3.75)

wh~reK is the cverall heat transfer coefficient. The above disc:Jssion shows that the knowledge of
the interface temperature, I, , is not necessary to determine heat flux through the multilayer walls.

III. Multilayer wall bounded on each side by conveclingfluids

Fig. 3.15 iliusrrates a multilayer wall bounded on each s:d.:: ':Jy convecting fluids. The convection
coefficients are respectively hI and h2 and the temperature of the circulating fluids are In and In ,

respectively. We wish to determinfl the heat flux through the wall.

CONVECTING
FLUID

~

Ifl-~
I I,

CONVECTING

k FLUID,

1\

x

Figure 3.15 Multiiayer
wall with con'/ection on
both sides.

,. L,-+-L2 -----j

The heat flux through the layers is constant and can be written as:

or (3.76)



"" k t2 - t3 q
q = , or t2-t3 = -L1

,---- .. L, k 1

"" k t3 - t4 or t3 -t4 = LL2q = 2

• L2 k2

"
" = 112((4 - tf2)

q
q or t4 -tf2 =-

h2
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(3.77)

(3.78)

(3.79)

Upon addition cfthe above equations we obtain:

(3.80)

or
(3.81)

where

(3.82)

If the wall consists ofn layers. the overall heat transfer coefficient will have the following form:

(3.83)

IV. Plane wall with heat generation andprescribed boundary temperatures

The only difference between this case and the case I is the heat generation in the slab. For a con­
stant conductivity, Eq. 3.62 becomes:

(3.84)

with boundary conditions given by Eqs. 3.66 and 3.67. The solution of the above equation is:

'"
t(x)=-;kX2 +Ax+B

The application of t~e boundary conditions yields:

(385)

(3.86)
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and
(3.87)

Knowing A and B, the temperature distribution in the slab is given by:

•
(3.88)

V. Plane wall with heat generation, one surface insulated the other subjected to convective heat
trartsjer

This case is illustrated in Fig. 3.16. The temperature distribution is given by Eq. 3.85. In this case,
the con~tants are determined by using the following boundary conditions:

h

INSULATED
FACE

CCtJVECTlYE
I-tEAT TRANSFER

x
Figure 3.16 Plane wall with heat
generation; one face insulated the
other cooled by convection.

X=o a/(X) =0
ax (3.39)

and are given by:

x=L
al(X)

- k-:; h[f(X) - Iflox

A =0

III Iff

B = ~k L2 + qh L + If-

(3.90)

(3.91)

(3.92)

The temperature distribution has, therefore, the following form:

(3.93)
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Figure 3.17 Plane wall with
heat generation and convective
bOundaries.

..
x

q'"

oj

\~

I, k

•j I

VI. Plane wall with heal generalion and conveclive boundary condilions on bOlh faces

As illustrated in Fig. 3.17, both faces of the plate are washed with a fluid at temperature If. The
heat transfer coefficient is h. The faces 1 and 2 are located at x =-L and x =L, respectively.

.'11

Heat generation rate is q

•

x=-L x=L

The temperature distri1::uticr. is again given by Eg. 3.85 subject to following boundary conditions:

x=L

.x =-L

(al(x»)- k\.ax = h[l(x) - Ifl

k(!?'~~») =h[t(x) -If]

(3.94)

(3.95)

Eq. 6.94 signifY that the conduction heat transfer that arrives to the face at x = L, - k(B Ilax), is
equal to the convective heat flux that enters the fluid bulk, i.e., h[I(L) - Ifl. The same boundary
condition at the face at x = -L does not have a minus sign in front of the k(B II ax) term. This
point was examined in details during the discussion of the boundary conditions in Section 1.2.2.
Using boundary cO:lditions 3.94 and 3.95, the consta:lts A and B appearing in Eq. 3.35 are deter­
mined as:

A=O (3.96)

(397)

The temperature distribution is given by:
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(3.98)

Comparing Eqs. 3.93 and 3.98 • we observe that the temperature distributions are the same.
Eq. 3.98 shows that the maximum temperature occurs in the midplane of the slab, i.e. , x:::: O.

, Therefore, at this point the temperature gradient is zero and there is no heat flux in either direc­
tion of x-axis. Eg. 3.98 also shows that the temperature distribution in the slab is symmetrical.
When a given case has both geometrical and thermal symmetries abollt x :::: 0, it is more conven­
ient to solve the conduction equation over the half region, i.e., for the slab under consideration
between x =0 and x = L by using the following boundary conditions:

x=C at(x) :::: 0
ax (399)

x=L at- k- :::: h[t(x) - ttlax (3.100)

instead of using boundary conditions given by Eqs. 3.94 and 3.95. This discussion also explains
why the terr.perature distributions given by Egs. 3.93 and 3.98 are the 5ame.

Example:

The fuel eiement of a pool type reactor is composed of a plate of metallic uranium of thickness
2L1 placed in sandwich between two aluminum plates (cladding) of thickness(L: - L I ). Th!s fuel
element is illustrated in Fig. 3.18. Heat energy, due to the fission of U235 • is generated in the fuel

III

plate at a uniform rate q . The tission energy deposited in the cladding plates is nt:gligible. The
convection heat transfer ccefficient and the temperature of the fluid washing the fuei element are
hand tf , respectively. Determine the temperature distribution in the fuel element.

This is a multiregion problem that involves two governing equations. As seen from Fig 3.18, the
problem has geometric and thermal symmetries with respect to the mid-plane of tile fuel element.
Under these conditions, it is more convenient to solve the problem over the half of the fuel ele­
ment extending from x:::: 0 tox :::: L?, . Indicating by 1 the fuel region and by 2 the cladding region,
the heat conduction equations are written as:

Fuel:

Cladding:

for (3.101)

(3.102)

with boundary condi!ions given by:
I

x=o (3.103)
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Figure 3.18 Fuel element of a pool type reactor.

11 (X) =12(X)

k
l
dll(X) =k

2
dI2(X)

dx dx

dI2(X)
-k2~ =h[12(X) _. Ifl

h

x
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(3.104)

(3.105)

(3.106)

Solutions ofEqs. 3.101 and 3.102 are given by:

and

Combining Eqs. 6.103 through 6.109, we obtain four equations:

A =0,

(3.107)

(3.108)

(3.109)

(3.110)
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(3.111)

(3.112)

• The solution of these equations yields the values of A, B, C and D. The temperature distribution
throughout the fuel element is ther. given by:

Fuel:

(3.113)

Cladding:

(3114)

1.2.3.2 Conduction in Cylindrical Geometry

I. Long hol!ow cylinder wilh prescribed temperalure on the walls

Cunsi.der the long hnllow cylinder illustrated in Fig. 3.19 with !ni1er and auter radii r 1 and r2 ,re­
spectively. The temperature of the inner wall is II and that "fthe outer wall is 12, There is no heat
generation within the cyiinder and the conductivity of the material is constant. We wish to deter-

.. mine the t::mperature variation in the cylinder wall.

k = const
Figure 3.19 Long hallow cylinder.

The application of E\!. 3.63 to the present situation yields:

'!!"'(rdt ) = 0
dr dr

(3.115)
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with boundary conditions:
1=11

• The integration of Eq. 3.115 gives:
I(r) =A lnr+ B

where A and B can be easily determined by using boundary conditions:

The temperature distribvtiOil is then given by:

(3.116)

(3.117)

(3.118)

(3119)

(3.120)

(3 121)

Based on the above temperature distribution, the linear heat flux (or heat flux per unit length)
through a surface located at r can be easily calculated:

. ..
, q k dl ,.... 1 Iz - 11 k 11 - lz

q = L = - 21tr-d = -"",1t r r 1 ( ) = 21t. In ( -/.)r . n rz - rl rz II
(3.i22)

If. Hollaw cylinder with convective boundaries on both walls

Fig. 3.20 is a sketch of a pipe in which a fluid at temperature In circulates. Heat is transferred
from this fluid to the pipe by convection, through the pipe wall by conduction then to the fluid
outside again by convection. The temperature of the fluid outside is ta . What is the linear heat
flux through the wall of the pipe.

Under steady state conditions, the linear heat flux is constant and we can write:
Inner surface of the pipe:

,
q =21t;lh l(tfl - II)

Through the wall (Eq. 3.127):

or (3.123)

or (3.124)
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Figure 3.20 Pipe with
wnvective boundaries.

or (3.125)

Upon additbn ofEq. 3.123,3.124 and 3.12j, we obtain:

or

(3.126)

(3.127)

where K is the overall heat transfer coefficient and has the following form:

(3.128)

III. Long Solid cylinder with heat generation and prescribed boundary temperature

The mathematical formulation of the problem is given by Eq. 3.63. Assuming that the condu~tivily

of the cylinder material is constant, this equation becomes:

(3.129)



The boundary conditions are:

r=O

r= r o

The solution ofEq. 3.129 is:

dt(r) =0
dr

t =t ...

'"
t(r) =_9-r2 +Alnr+B

4k

3.29

(3.130)

(3.131)

(3.132)

. -

The application ofboundary conditions shows that:

A=O

III

B q:2
= t ... + 4kro .

The temperature distribution is then given by:

t(r) = q:;~[1-c.'J ']+ I"

IV. Solid cylinder with heat generation and convective boundary condition

In. thIs case the boundary condition~ will be:

(3.133)

(3.134)

(3.135)

r==O dt(r) =0
dr

(dt(r»)-k - = h[t(r) - tfl
\. dr

(3.136)

(3.137)

when,: tf is the temperature of the convectin.g fluid. Using the above conditions we obtain for the
integration constants A and E the following:

A =0

The temperature distribution is given by:

(3.138)

(3.139)
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•

The boundary conditions are:

r= 0

r= ro

The solution ofEq. 3.129 is:

t = tw

III

I(r) =_Lr 2 +Alnr+B
" 4k

(3.130)

(3.131)

(3.132)

. ..

The application ofboundary conditions shows that:

A=O

III

B :=: t w + ~k r~ .

The temperature distribution is then given by:

IV. Solid cylinder with heat gene~ation and convective boundary condilion

In this case the boundary conditions will be:

(3.133)

(3.134)

(3.135)

r=O

r:=:ro

dt(r) =0
dr

(
dt(r»)-k d;:- =h[t(r) - tf]

(3.136)

(3.137)

where If is the temperature of the convecting fluid. Using the above conditions we obtair. for the
integration constants A and B the following:

A=O

/n III

B
q 2 q

=4k r0 + 2h r0 + If

,.
The temperature distribution is given by:

(3.138)

(3.139)
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(3.140)

Exmnple

• Consider the long cylinder sketched in Fig. 3.21. The outer 3urface of the cylinder at r = r2 IS

. -

Figure 3.21 Long hollow cylin­
der with heat generation.

perfectly insulated whereas the inner surface at r = rl is cooled by convection. Heat is generated
m

uniformly in the cylinder at a rate ofq . Determine the temperature distribution in the cylinder at
the point where the coolant tEmperature is If . The conductivity of the cylinder material is
consta.nt.

To determine the temperature distribution in the wall region, Eq. 3.63 should be solved subject to
the following boundary conditions:

dt(r) I

k~ =h[t\r) - Ifl

dt(r) = 0
dr

(3.141)

(3.142)

The solution ofEq. 3.63 is given by Eq. 3.132. The integration constants are determined by using
the above boundary conditions. The use ofEq. 3.142 gives:,

i

or

m

1q 1---r2+A-=O
24k r2 (3.143)
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•

and Eq. 3.141 yields:

or

", "'2 ("'''' )q r1 q r2 q 2 q 2---+-- =- h --r1 + -r2lnrl ..L B -tf2 2 r1 4k 2k .

", (2 ) ", 2( 2 )q rl r2 q r 1 1 r2
B=-- --1 +-- ---inrl +tf

2hr~ 2k2r~

(3.144)

(3.145)

(3.146)

Substituting Eqs. 3.144 and 3.146 into Eq. 3.132, we obtain the temperature distribution as:

1.2.4 One Dimensional Time Dependent Conduction

(3.147)

In this section we will discuss transient conduction problems in a system. Transient heat transfer
ccnditions are achieved when heat generation is suddenly .tarted or stopped, or the boundary
conditions of a heated body are suddenly changed. Under these conditions, the temperature at
each point in the body will .tart changing. These changes wi!! continue until a new equilibrium is

. - reached between the energy created in the body and the energy removed from the body, or until
an equilibrium temperature is reached between the hot body and the surrounding. To determine
the temperature distribution within a solid during a transient process, we should solve general
conduction equation (Eqs. 3..l4 or 3.43, or 3.44) with appropriate boundary and initial conditions.
For one dimensional geometry these equations reduce to:
Rectangular coordinates:

Cylindrical coordinates:

Spherical coordinates:

a(at) m at- k- +q =cp­ox ox Ot

I 0 (ot) '" at-- kr- +q =cp-ror or Ot

1 0 ( ot) ", ot-- kr2- +q =cp-
r 2 0r or at'

(3.148)

(3.149)

(3. ISO)

In certain class of problems, the spatial distribution of the temperature in solid body stays nearly
uniform during the transient. Under this condition, we may assume that the temperature in the
body is independent of space and varies orJy with time. The analysis of heat transfer with such an
assumpticn is culled the "lumped system analysis." Since the temperature is a function of time
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only, the heat transfer analysis can be easily conducted. Because its simplicity, in this section the
discussion of the transient heat transfer will start with lumped system analysis.

1.2.4.1 Lumped System Approach- System with High Conductivity
•

Lumped system approach assumes that the thermal conductivity of the solid object is so great that
during a transient heat transfer process the temperature gradient within the object is small, i.e., the
temperature, for all practical purposes, can be considered as uniform at any instant. To illustrate
this approach, two examples that consist the immersion of a hot object in a quenching bath of infi­
nite extent, i.e. , constant temperature and 3 solid object in which heat is suddenly generated and
placed in a constant temperature surrounding will be considered. Both cases will be discl!ssed by
using macroscopic energy equation (2.23) which for the present case is written as:

(3.15t)

is constant over the

internal energy per unit mass

density

unit normal vector to the bounding surface

heat flux applied to the bounding surface

p
....
n

where

u

.... "q
q"' heat generation rate

. - Assuming that p, uand q"' are constar.t throughout the solid body , q"
bounding surface of the body and knowing that:

V du dtp -=cpV-
dt dt

(3.152)

Eq. 3.151 becomes:
dt -+ -+" '"cPV-
d

=-An.q +Vq

"'
(3.153)

where" V and A He the volume and bounding surface area of the solid object, respectively. If

Ii .q is positive, heat flows out of the object, if it is negative, heat flows into the object.

/. Immersion oja high thermal conductivity solid body ill a quenching bath

Consider a solid body at an initial temperature Ii immersed suddenly in a quenching bath of infi­
nite extent, i.e. , at a constant temperature tf as sketched in Fig. 3.22. Assuming that the material
of the body has a high thermal conductivity, the gradient within the body will be small, conse­
quently, the temperilture distribution will be uniform and almost equal to the surface temperature.
The heat transfer from the body to the surrounding is controlled by convection. Under these con-

ditions, the termA Ii .q"Eq. 6.153 is positive and given by:
-+ -+"

An. q =Aq; =Ahc(t-tf). (3.154)
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QUENCHING
FLUID

A
Figure 3.22 Solid object
in an infinite quenching
bath.

There is no heat generation in the body. Therefore, Eq. 6.] 53 becomes:

dt Ahc
-=-~lt-If)
dt cpr

(3.155)

with initial condition:
'C= 0

Introducing the following variable change:

t =t;. (3.156)

e=t- tf
Eq. 3.155 can be written as:

with boundaty condition:

The solution ofEq. 3.158 suhject to initial condition is given by:

( Ah c "8=e;exPI--tj
\ cpV

or

(3.157)

(3.158)

(3.159)

(3.160)

(3.161( Ahc "t- tf =(I; - tf)exp I --t I.
\ CpV)

The quantity cpV/Ah c the "thermal time constant" for the geometry under consideration and has
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the dimension of time. The numerator of the time constant, cpV, is called is called the "lumped

thermal capacitance," and l/Ahcis known as the convective resistance.

Let us give a closer look the exponent ofEq. 3.161 lind rearrange it as follows:

• (3.162)

with a = k/cp. We observe that the time constant does not cOiltain the thermal conductivity; we
introduced it by multiplying the numerator and the denominator ofEq. 3.162 by the thermal con­
ductivity, k. The ratio of volume to bounding surface area of the body is called the "characteristic
length," Le.,

(3.163)

With this definition, Eq. 3.162 becomes:

T

t
T

f
T

f, .
'T, ---

"
I,

(3.164)

(.) Bi < 0.1 (b) 0.1 < B; - I

Figure 3.23 Relationship between the Biot number
and the temperature profile.

The term hcLclk(=hcVlkA) is known as "Biot number." The term atIL~(=atA2IVZ) is
known as "Fourier number." The Biot number is a dimensionless ratio of convection coefficient to
thermal conductivity and gives an indication of the temperature drop within the solid body com­
pared to the temperature difference between the solid surface and the fluid. If the Biot number:
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(3.165)

then Eq. 6.161 can be used with little error. Therefore, the criterion for the use oflumped system
approach is appropriate when Biot number is less than 0.1. The effect of the Biot number on the

• temperature distribution in the solid body is illustrated in Fig. 3.23. Fig. 3.23a shows that when
Bi < 0.1, the temperature distribution is nearly flat and the convection heat transfer coefficient is
the controlling parameter. Fig. 3.23c shows that Bi » 1, the conduction process controls the
heat transfer. In turn, Fig. 3.23b shows that for 0.1 < Bi < 1 both conduction and convection
should be accounted for.

The Fourier number is a dimensionless time parameter. It represents the ratio of heat transfer by
conduction to the energy storage rate within the body. In terms of dimensionless numbers,
Eq. 3.161 is written as:

:-I{= (/-1;)exp(-Bi.Fo). (3.166)

II. Sudden heat generation in a solid body

Consider the solid body sketched in Fig. 3.24. Initially the body is in equilibrium with the sur­
rounding which has an infinite exrent. Tile temperature of the surrounding is Ie and it is constant.
At time zero, heat is suddenly generated in the body at a rate of qlll W/m 3

• The conductivity of
the material is great and heat transfer from the body to the surrounding is controlled by convec­
tion only. We wish to determine the variation of the body temperature with time.. -
Lumped system approach can also be used in this case to determine the temperature history of the

Figure 3.24 Solid body with
heat generation.

'(=0 t=t.
I

SURROUNDING
AT t

l

A

body. The application ofEq. 3.153 to the present case yields:

1/1

dl Ahc q- =-----!:f.-ll- 't)+­dt cpr cp (3.167)

or



"'de Ahc q-=--8+­
d:t cpV cp

where 8 = I - If . The initial condition is:

3.36

(3.168)

• t=O I = If or 8 = 0 (3.169)

The solution ofEq. 3.168 is given by:
( Ahc I q"'V

8=Bexp,--t) +-.
\ cpV Ahc

Using the initial condition, the constant, B, is determined as:

"'q V
B=-­

Ahc

(3.170)

(3.171)

Substituting Eq. 3.171 into Eq. 3.170 and knowing that 8 = I - If, we obtain for the variation of
the temperature with time the following expression:

q"'V[ ( Ahc lJI-If= - l-expt--t) .
Ahc \ cpV

In the above solution, ift = 0, I = If; ift~ co, the temperature of the body becomes:

(3.172)

(3.173)

1.2.4.2 Syslems with High Suiface Conduclance

We will discuss now the systems where the convection heat transfer coefficient (film conductance)
is very high. Therefore, the surface temperature of the object, for all practical purposes, is equal
to the temperature of the surrounding fluid. Because of the shape of the fuel rods used in nuclear
reactors, we will only consider transient conduction in solid cylinders. We will assume that the
cylinder is infinitely long and axial symmetry exists. Under these conditions, the transient problem
will have two independent variables: radial coordinate, r, and time, t. In the absence of heat
sources and constant conductivity, the heat conduction equation (Eq. 3.148) reduces to:

(3.174)

'..'
I

The solution of this equation can be obtained by using the method of separation of variables.
Therefore, a solution in the following form will be sought:



I(r,"t) = R(r)T("t).

SubstitutingEq. 3.175 intoEq. 3.174, we obtain:

3.37

(3.175)

•
_I_aT = .l(a

2
R +laR) =-],,,2 (3.176)

aTa"t R a;-2 rar .
A2 is a separation cor.stant introduced because of the fact that each member of this equation is a
function of only one of the variable and that the equality between the members is only possible
when both of them are equal to the same constant. The separation constant is taken to be ntlgativc
to obtain a negative exponential solution in time.

Eq. 3.175 yields two ordinary differential equations:

(J.I77)

and

(3.178)

The solution cfthese equations are:

and
R(r) =CJo(Ar) +- DYoO, r) ,

(3.179)

(3.180)

respectively. Joand Yo are zero order Bessel functions of the first and second kind, respectively.
Since the cylinder is solid, Yo is undefined when r ~ O. Consequently, to obtain a meaningful so­
lution to a physical prcblem, the constant D should be equal to zero. The solution ofEq. 3.174 is
then given by:

I(r,"t) = Bexp(-A2at)Jo(Ar) (3.181)

where B = AC. The constants B and A. are to be determined by initial and boundary conditions.

Consider now a solid cylinder of radius r0 subject to an initial temperature distributionf(r) which
is symmetrical with respect to the axis of the cylinder. Assume that the temperature of the surface
of the cylinder is suddenly reduced to 0 DC (or to any other constant temperature) and maintained
at that value for all subsequent times. This is equivalent to immerse the cylinder in an infinite sur­
rounding at temperature If with very high heat transfer coefficient such as seen, for example, un­
der boiling liquid conditions. What is the temperature distribution in the cylinder as a function of
space and time.

,
The temperature distribution in the solid cylinder is given by Eq. 3.181 subject the following initial
and boundary conditions:

"t=O 1=/(1') (3.182)



't~0 t=O at r=ro .
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(3.183)

,
The application of the boundary condition given by Eq. 3. 183 to Eq. 3.181 results in:

JoO.ro) =O. (3.184)

This equatiOl'! has infinite number of roots (/I..r. with n = 1,2,3, ...00) and each root correspond to

a particular solution ofEq. 3.174. The general solution ofEq. 3.174 is then given by:

..
t(r, 't) =- L B.exp (-A~a't).JoO.. ,r).

/1=1

The application of initial condition given by Eq. 3.183 to the above solution leads to:

..
fer) = L B.Jo(A.r) .

/1=1

Since A. 's are defined as the roots ofEq. 3.184, the set of functions:

(3.185)

(3.186)

n = 1,2,3, ....00 (3.137)

as discussed in Appendix III, constitutes a set of orthogonal functions. The constants B. 's ap­
pearing in Eq. 3.186 can, therefore, be detemined by using the properties of the orthogonal func­
tions. According to Appendix III, these constants are given by:

(3.188)

where .11 is first order Bessel function of the first kind. The final solution is obtained by substitut­
ingEq. 3.188 intoEq. 3.186:

( ) - 2 ~ (' 2 Jo(A.r) f'· rji( )J ( )dt r" - 2' ~ exp -A.a,) 2 r 0 A.r r.
ro /1=1 J.(A.ro) 0

(3.189)

1.2.4.3 System with Finite Internal Conductivity and Surface Conductance

In this case both conductances (internal and surface) have finite values. The long cylinder dis­
cussed in the previous section is now immersed in a fluid of finite heat transfer coefficient h. The
temperature distribu~ion is still given by Eq. 3.181. The only difference is in the boundary condi­
tions:

't=0 t=f(r) (3.190)



t~O
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(3.191)

In Eq. 3.191 it is assumed that If= O. This assumption does not affect the generality of the solu­
tion. If If were different from zero, we would simply change the reference temperature and write:

• e= 1- If. This change would give the same result as If= O. The application of boundary condi­
tion given by Eq. 3.191 leads to:

(3.192)

Knowing that:

Eq. 3.192 becomes:

8Jo(Ar)
8r

, J.(Aro) _ hro.
/\,roJo(Aro) - k .

(3.193)

(3.194)

The above equation has infinite number of roots (An with r. = 1,7.,3, ......00) and each root corre­
sponds to a l'articular solution ofEq. 3.174. The general solution is gi·,en by:

'"I(r, t) = L Bnexp (-A~at)Jo(Anr)
n=1

(3.195)

where Bn are constants to be determined. Upon application of initial condition given by
Eq. 3.190, we obtain:

~

f(r) = L BnJo(A.r.r) . (3.196)
n=1

Referring to Appendix III and comparing Eqs. 3.195 and 111.31, we conclude that the set:

{Jo(A.nr)} (3.197)

constitutes a set of orthogonal functions. The constants En in Eq. 3.196 can then be determined
by using the properties of orthogonal functions and according to I1I.32 !n Appendix III have the
following form:

(3.198)

Finally the temperature distribution is given by:

I 2 '" J (A. r) f'I(r, t) ="2 L exp(-A.~at) 2 0 n 2 : rf(r)Jo(A.nr)dr
r0 n=. Jo(A.nr0) +J 1 (A.nr0)

(3.199)
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1.2.4.4 System with Finite Internal Conductivity and Surface Conductance and Subject
to Sudden Heat Generation

A long solid cylinder of radius ro has an initial temperature distributionf·(r) which is symmetri­
cal with respect to the axis of the cylinder. For times t ~ 0 heat is generated in this cylinder at a

, constant rate ofq '" Watt/m3
. The boundary surface of the cylinder is subject to convection with

an infinite surrounding at temperature If'" 0 °C. Th~ convection heat transfer coefficient is con­
stant and equal to he. Determine the temperature distribution as a function of space and time in
the cylinder.

The difference hetween this case and the two cases studied above is the sudden heat generation in
the solid cylinder. Under this condition, the mathematical formulation of the problem is written as:

'"
a

2
t +1 at +L = lat

ar2 rar k nat'

The initi,,1 and boundary conditions are specified as:

(3.200)

r= roo

t=O

t~O

t=l"(r) for O~r~ro,

-i t(r) = he t(r) for
ar

(3.201)

(3.202)

Moreover, the temperature should have a fil!ite value at r=O.

Because of the presence of the term q'H/k , Eq. 3.200 is a nonhomogeneous differential equation
and its solution can not be obtained by the method of separation of variables. To get around of
this difficulty, we will assume that the solution of this equation has the following form:

t(r, t) = th(r, t) + t,(r).

Substituting Eq. 3.203 into Eq. 3.200, we obtain:

2 2 III

ath lath lath aI, lat, q
--+-----~ --------
ar2 r ar a at ar2 r ar k'

(3.203)

(3.204)

Since the left hand side of this equation is a function of r and t and the right hand side is a func­
tion of r only, the equality of both sides is only possible if they are equal to the same constant. If
this constant is different from zero, we still obtain a nonhomogeneous equation. The only possibil­
ity toward a solution is that this constant be equal to zero. Therefore, Eq. 3.204 yields two differ­
ential equations:

(3.205)

and
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(3.206)

An examination of the above equations shows that the problem is split into a steady state problem
• for t,(r), (Eq. 3.205), and into a homogeneous transient problem for th(r, t), (Eq. 3.206). The

nonhomogeneity qmIk is included in the steady state problem whereas the transient nature of the
problem is included in the homogeneous equation. The initial and boundary conditions for
Eqs. 3.205 and 3.206 are obtained by combining Eqs. 3.203, and Eqs. 3.201 and 3.202:

t=O t(r, 0) = th(r, 0) + t,( r) (3.207)

t~O (3.208)

Since

Eq. 3.207 becomes:

t=O

Eq. 3.208 can be written as:

!(r, 0) = F(r)

th(r, 0) =F(r) - t.(r) = f(r).

(3.209)

(3.210)

'-
t~O _koth(r,t) ht (r t)=kot,(r) +ht (r) at r=r

oor h , or ' (3.211)

We can easily see that the above equality is only possible if both sides are equal to the same ccn­
stant and this constant can not be anything else but zero. Consequently, the boundary condition
given by Eq. 3.211 becomes:

and

-it,(r) = ht (r)
or '

at r = ro (3.212)

t~O at r = ro (3.213)

Eq. 3.212 constitutes the boundary condition for Eq. 3.205, and Eqs. 3.210 and 3.213 constitute
the initial and boundary conditions for Eq. 3.206.

The solution of Eq.. 3.205, subject to boundary condition specified by Eq. 3.212, is given by
Eq. 3.140 with tf= 9:

(3.214)
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In turn, the solution of Eq. 3.206, subject to initial and boundary conditions specified with
Eqs. 3.210 and 3.213, is given by Eq. 3.199. Therefore the final solution is:

"'[ 2]",t(r, t) = t,(r) + th(r,'t) = ~k 1- (;:) + q2~o

(3.215)

wheref(r) is defined with Eq. 3.210.

Ifinitially, the cylinder were in equilibrium with surrounding,j(r) would be zero andf(r) would
be:

, -

f(r) =-t,(r).

Under this condition the temperature distribution is given by:

t(r, 't) =t,(r) + th(r, 't) =~:[1-(:.f] + q~~o

(3.216)

(3.217)

In the above temperature distribution when 't ~ <Xl , the solution tends toward the steady state
temperature distribution. When 't = 0, the second term of the equation is nothing else but the de­
velopment in series of the first term, t,(r). Therefore t(r, 0) = 0; this is the initial condition.

Fig. 3.25 compares for a given time, 't, the transient temperatures with steady state
temperatures.This figure shows that at each time, 't, the steady state temperatures, t,(r), are sub­
tracted by an amount of th(r, 't) to obtain the transient tempp.rature distribution, t(r, 't).

~
I
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, - Figllrt: 3.25 Comparison of the transient and steady state temperatures for a
given time.
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