1 PRINCIPLES OF HEAT TRANSFER

This chapter is intended to discuss different energy transport mechanisms which are usually classi-

* fied as conduction, convection and radiation. From the second law ¢t thermodynamics we know
that the heat flows whenever there is a temperature difference, i.e., temperature gradient. The
knowledge of the temperature distribution is essential to evaluate the heat flow. The temperature
distribution and the heat flow constitute two basic elements in the design of thermal equipments
such as boiiers, heat exchangers, nuclear reactor cores, etc. Since in nuclear reactors, under nor-
mal operating conditions, radiation heat iransfer has limited application, the present discussion
will be mainly focused on conduction and convection heat transfers.

1.1 Mechanisms of Heat Transfer
{. Conduction

The conduction is defined as the transfer of energy from one point of a medium to an other under
the influence of temperature differences. On the elementary particle ievel, the conduction is visual-
ized as the exchange of kinetic energy between the particies in high and low temperature regicns.
Therefore, the conduction is attributed to the elastic collisions of molecules in gases and liguids,
to the mation of free electrons in metals, and to the longitudinal oscillation of atoms in solid insu-
lators of electricity. A distinguishing characteristic of conduction is that it takes place within the
boundary of a medium, cr across the boundary of a medium into an other medium in contact with
the first, without an appreciable displacement of the matter.

On the microscopic level, the phvsical mechanisms of conduction are complex. Fortunately, we
will consider the conduction heat transfer at a macroscopic leve! and use a phenomenological law
based on experiments made Biot and formulated J.B. Fourier in 1882. This law can be illustrated
by considering a simple case, a wall of thickness L, surface area A and whose faces are kept at
temperatures t, and t, as shown in Fig. 3.1. t, is greater than t,. Under these conditions, heat flows
from the face of high temperature to the face of low temperature. According to Fourier's law of
heat conduction, the rate of heat transfer in the x-direction through the wall element, dx, located
at x is proportional to:

¢ the gradient of temperature in that direction, dt/dx, and
+ to the surface area normal to the direction of heat transfer, A.

Therefore, the heat transfer rate is given by:

__p4dt
gx=—kAZ | (3.1)

where k is the constant of proportionality and it is called the "therma! conductivity"; it is a prop-
erty of the material. The minus sign appearing in Eq. 3.1 is due to the convention that the heat is
taken to be positive in the direction of increasing x and also ensures that heat flows in the direc-
tion of decreasing temperature, thus satisfies the second law of thermodynamics. As sketched in
Fig. 3.2a, if the temperature decreases with increasing x, then the gradient is a negative quantity
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Figure 3.2 Sign convention for the direction of heat in the Fourier law.

and the minus sign of Eq. 3.1 ensures that g is positive. Conversely, if the temperature increases
with increasing x (Fig. 3.2b) the gradient is positive and g, is negative. In either case heat flows in
the direction of decreasing temperature,

Dividing both sides of Eq. 3.1 we obtain:

R LR : G.2)
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where the quantity q: is called the heat flux. The dimension of heat flow rate is energy per unit
time, i.e., J/s whereas the dimension of df and dx are Kelvin (K) or degree Ceisius (°C) and meter
(m), respectively. Consequently, the unit of thermal conductivity is:

1 w
k S mK or mk
and the unit of heat flux is:
oo L W
g, o’ or g

Assuming a linear temperature variation in the wall illustrated in Fig. 3.1, Eq. 3.1 can be easily -
tegrated:

Lqs , _ e
jo L=~ kdi (3.3)
tc obtain:
q:L=—k(ts - 1)) (3.4)
or '
o - tl — 12
gx k——L : (3.5)

.. Since t; >, qx is a positive quantity. Therefore, it is in the positive direction. If #; > ¢, then

g, would be negative and heat flow would be in the negative x direction,

Eq. 3.1 or 3.2 give one dimensional form of Fourier's law of heat conduction. In general, the tem-
perature in a body may vary in all three coordinate directions, i.e.,

t=Kx,y,z2,7) (3.6)

where T is the time. Therefore, the general torm of Fourier's law s’
- —>

g"=-kV 6.7

. ) 2 . .
where g is the conduction heat flux vector and V is the gradient of the scalar temperature field.

-
According to Fig. 3.3, q” can be written as:

R ] q'=qci+q, ] +q; k (3.8)
and ~k'V as: ’
kVi= k7O g o
KV i=—ki So-k) Z-kk (3.9)
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Comparing equations 3.8 and 3.9 we conclude that:

II__ _a'!_
qx'_ kaxa

dy 55,';

a[ It-__gt-
=k

(3.10)

g"=-kVr

- -

-

Figure 3.3 Three components of
the heat flux.

-
i, j and F are unit vecters in the x, y and z directions. In the above discussion, the medium is

assumed to be isotropic.

The thermal conductivity defined with Eq. 3.1 is a property of a material and is determined experi-
mentally. From gases to highly conducting metals, k varies by a factor of about 1.5x1C*. The nu-
merical value of the thermal conductivity is an indication of how fast heat is conducted through
the material. Thermal conductivity varies with temperature. Only for limited number of materials,
the thermal conductivity depends weakly on temperature. In many others, this dependence is
rather strong. Table 3.1 gives the thermal conductivity of selected materials.

Table 3,1 Thermal conductivity of selected materials
(at 25 °C if not specified)

Material k in W/mK Material k in W/mK
Copper 386 Uranium dioxide at 1200 °C 26
Aliminum 204 Uranjum dioxide at 1800 °C 2.2
Steel 64 Water (light and heavy) 0611
Stainless steel, 18-8 15 Air 0.027
Zirconium | 13

Uranium metal at 590 °C 30

Uranium dioxide at 600 °C 4
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II. Convection

Convection is the term used for heat transfer mechanism which takes place in a fluid because of a
combination of conduction due to the molecular interactions and energy transport due to the mac-
roscopic (bulk) motion of the fluid itself. In the above definition the motion of the fluid is essential
otherwise the heat transfer mechanism becomes a static conduction situation as illustrated in Fig.
3.1. When the term of convection is used, usually a solid surface is present next to the fluid. There
are also cases of convection where only fluids are present, such as a hot jet entering into a cold
reservoir, However, the most of the industrial applications involve a hot or cold surface transfer-
ring heat to the fluid or receiving heat from the fluid.

If the fluid motion is sustained by a difference of pressure created by an external device such as a
pump or fan, the term of "forced convection" is used. On the other hand, if the fluid motion is
predominantly sustained by the presence of a thermally induced density gradient, then the term of
"natural convection" is used.

To understand better the heat exchange between a solid and fluid, consider a heated wall over
which a fluid flows as sketched in Fig. 3.4. The temperature of the wall is ¢, . The velocity and the
temperature of the fiuid far fror the wall (free stream) are U and t., , respectively. For a given

VELOQCITY
PROFILES

_TEMPERATURE
PROFILES

" HEATED WALL

//////////////// q

Figure 3.4 Convection heat transfer to a flow over a heated wall.
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stream velocity, the velocity of the fluid decreases as we get closer to the wall. This is due to the
viscous effects of the flowing fluid. On the wall, because of the adherence (nonslip) condition the
velocity of the fluid is zero. The region in which the velocity of the fluid varies from the free
stream value to zero is called "velocity boundary layer." Similarly the region in which the fluid
temperature varies from its free-stream value to that on the wall is called the "thermal boundary
layer." Since the velocity of the fluid at the wall is zero, the heat must be transferred by conduc-
tion at that point. Thus, we calculate the heat transfer by using the Fourier's heat conduction law
(Eq. 3.1 or 3.2), with thermal conductivity of the fluid corresponding to the wall temperature and
the fluid temperature gradient at the wall. The question at this point is that: since the heat flows
by conduction in this layer, why do we speak of convection heat transfer and need to consider the
velocity of the fluid. The short answer to this question is that the temperature gradient of the fluid
on the wall is highly dependent on the flow velocity of the free-stream. As this velocity increases,
the distance from the wall we travel to reach frec stream teinperature decreases. In other words,
the thickness of velocity and thermal boundary layers cn the wall decreases. The consequence of
this decrease is to increase the temperature gradient of the fluid at the wall, i.e., an mcrease in the
rate of heat transferred from the wall to the fluid. The effect of increasing frec stream velocity on
the fluid velocity and temperature profiles close to the wall is illustrated in Fig. 3.4. Note also that
the temperature gradient of the fluid on the wall increases with increasing free stream velocity.

Sir Isaac Newton experimentally found that the heat fux on the wall is proportional to (£, -~ t.) :

%~ ty—lw) 3.11)

Introducing a proportionality constant h, he proposed a law known as Newton's law of cooling:
ge = hA(l, — ) (3.12)

where h is the convection heat transfer ccetficient or the film conductance and 4 heat exchange
surface. The unit of 4 is W/m*K or J/sm® K. Table 3.2 gives the crders of magnitude of convec-
tive neat transfer coefficients.

Table 3.2 Order of magnitude of convective heat transfer coefficients

Fluid and flow conditions hW/m*K

Air, free convection 5-25

Water, free convection 15-100

Air or superncated steam, forced convection 30-300

Oil, forced convection 60-1,800
Water, forced convection 300-15,000
Liquid sodium, forced convection 10,000-100,000
Boiling water 3,000-60,000

Condensing steam 3,000-100,000
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From the above discussion, we conclude that the basic laws of heat conduction must be coupled
with those of fluid motion to describe, mathematically, the process of convection. The mathemati-
cal treatment of the resulting system of differential equations is very complex. Therefore, for engi-
neering applications, the convection will be treated by an ingenuous combination of mathematical
techniques, empiricism and experimentation.

Il Radiation

It has been experimentally observed that a body may loose or gain thermal energy in the absence
of a physical transporting medium. For example, a hot object placed in a vacuum chamber with
cooier walls is observed to loose thermal energy. This loss of energy is due to the electromagnetic
waves emissions (or photons) known as thermal radiation. Regardless of the form of the matter
{solid, liquid or gas) this emission is caused by the changes in the electrons configuration of the
constifuent atoms or molecules. In the above example, radiation heat transfer could aiso occur be-
tween the hot object and cold chamober walls even if the chamber was filled with a sufficiently
transparent continuous medium such as air. The wavelength of the electromagnetic radiation is
comprised between 10" um and 107 um. The maximum flux at which radiation may be emitted
from a surface is given by the Stefan-Boltzmann law:

q:=~31—'=cTi' Wim® (3.13)

where 7 is the absolute temperaturs (in K) of the surface and o is the Stefan-Boltzmar constant
(o =5.57 x 107 W/m?K*) . Eq. 3.13 applies only t0 an ideal radiator or "Black body " In prac-
tice, the radiant surfaces do not emit thermat energy ideally. To take into account the "gray" na-

ture of the real surfaces, a dimensioniess factor, €, called emissivity is introduced. Therefore heat
flux emitted by the surface is written as:

g, =scTi  Wim? (3.14)

with 0 < g £ 1. If e=1, we obtair an ideal radiator.

If heat is transferred by radiation between two gray surfaces of finite size, as illustrated in Fig. 3.5,
the rate of heat flow will depend on temperatures 7, and 7, on emittances €, and €, , and on the

Figure 3.5 Radiation heat
transfer between two finite
gray surfaces.
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geometry of the system. From Fig. 3.5 it is obvious that some radiation originating from object 1
will not be intercepted by object 2, and vice versa. In such a case, the determination of the heat
flow rate is rather complicated. Usually we write that:

g, =A\Fyuo(T) - T3) (3.15)

where g, is the net radiant energy interchange from object 1 to object 2 and F,, is a transfer factor
which depends on emittances and geometry. For an annular space between two infinite cylinders
or between two spheres F,, is given by:

1
Fl'g:"‘— —— (316
s+ - 1) )

where €, and €, are the emissivities of obhjects 1 and 2, respectively. If 4, = A, , the radiant net
energy exchange between concentric cylinders is given by:

g = A~— —o(1i - 75 (.17)
ata— 1
and corresponding heat flux:
=L . ri_TH (3.18)
r A Ell.._i_%_l .

In many engineering applications, it is convenient to express tha net energy exchange as:
qr=h AT ~T2). (3.19)

Comparing Eqs. 3.17 and 3.19, we conclude thar the "radiation heat transfer coefficient," 4 for
concentric cylinders when A, = 4 is given by:

hy = T (i_—]'(le + T;)(Ti +737) . {3.20)

With this approach, we have modeled the radiation heat transfer in a manner similar to coavection
heat transfer. It should be noted that /2, depends strongly on temperature, while the temperature
dependence of the convection heat transfer coefficient is generally weak.

In many engineering problems we may consider simultaneously convection and radiation heat
transfer. In such a case the total heat transfer from the surface is written as:

¢

9=4-+4q: (3.21)
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1.2 Conduction Heat Transfer

In this chapter, using the Fourier's heat conduction law, we will establish a general equation for
the conduction of heat in solids. This equation will be presented in rectangular coordinates as well
as in polar cylindrical and in spherical coordinates. We will also discuss the most frequently en-
countered boundary conditions. Given the introductory nature of this section, the application of
the general conduction equation will only be limited to one dimensional steady state and transient
problems.

1.2.1 General Conduction Equation

In studying heat conduction problems, the main objective is to determine the temperature distiibu-
tion in a solid as a function of space and time, ¢(x,y,z.7), for a given set of imitial and boundary
conditions. Once this distribution is known, the heat flux at any point of the sclid or on its surface
can easily be determined. In the following, using the energy conservation principle and the
Fourier's heat conduction law we will establish the general heat conduction equation. The solution
of this equation for a given set of initial and bcundary conditions will allow us to determine the re-
quired temperature distribution. To derive the conduction equation, consider the solid medium
shown in Fig. 3.6 and select within this solid a differential control volume in the shape of a

A
/
dx

Figure 3.6 Control volume for conduction analysis in rectangular coordinate
system.
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parallelepiped of dimensions dx, dy, dz in the x, y, z directions as illustrated in the same figure. In-
dicating by:
grand g.a  heat entering and leaving the control volume in the x-direction,
gyand g,.s, heat entering and leaving the control volume in the y-direction,
g:and g,.s; heat entering and leaving the control volume in the z-direction,
'O, heat generation in the control volume, and
U internal energy of the control volume
the energy conservation principle applied to the control volume can be written as:

oUu
qx+qy+q2"qx+dx-'qy+dy_qz+dz+gg=—a-; . (322)
Using the Fourier's heat conduction law, we can write that:
e = —( %f) dydzdr (3.23)
!
= k—-) dxdzdr 3.24
0 ( ay/, (3.24)
q: = —(ka—;) dxdzdr (3.25)
__{, 01
govae = (kL) _ dydac (3.26)
__{,0¢ .
Gpedy = —(ka—] axdzdt (3.27)
Y7 iy
— {90!
Grvdz = (k az) Mzdxdydt (3.28)
we can also write that;
Q; =q" (x,y,z, ydxdydzdr (3.29)
oU_ . 2t
3¢ = CP a_cdxdydzdt (3.30)

where qm(x, ¥,Z,7) is the heat generation rate per unit volume, and ¢ and p are the specific heat
and specific mass, respectively. Eqs. 3.26, 3.27, 3.28 | after using Taylor series expansion and ne-
glecting the terms of second and higher orders, can be written as:
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—(k%) dydzds —-a—i(k—gyl) dudydad, (331)

Gory = — ( g;) dxdzdt —g-v—( g;) dedydzdr (3.32)
y

(k )dxdyd —-—(k ) dedydec (3.33)

Substituting Egs. 3.23-3.25 and Eqgs. 3.29-3.33 into Eq. 3.22 we obtain the general conduction

equation:
2 (301 ﬁ_(éi) B (18 40" = cpd!
ox kax)-l-ay kay +az(kaz) +q cpa,c- (3.34)

The conductivity, &, can be a function of space and temperature. However, we will assume that
the conducting medium is homogeneous and isotropic. Under this condition, the therinal conduc-
tivity depends only on temperature and because of this dependence in Eq. 3.34 it is left in the de-
rivatives. If the conductivity is independent of temperature, i.e., position, Eq. 3.34 becomes:

ot , 9% , QU ot
k( + + )+ =cpE= )
ax* vt 9zt T =PH7 (3.35)

When there is no internal heat generation, the above equation reduces to:

9%t 8% , 8% _ 101
6x2+ay2+822~°‘51

(3.36)

where oo = k/cp (m’/s) is a thermophysical property of the material and it is called "the thermal
diffusivity.” This equation is called Fourier's equation.

For steady state conditions, Eq. 3.35 reduces to:
9% 9% 3% _ g
+ + =
axt  oy? 9zt k

(3.37)

which is known as Poisson's equation. Finally for steady state conditions without heat generation
Eq. 3.35 becomes:

0% 8% 3
+
; ox*  9y? T oz

=0 (3.38)

which is Laplace's equation.
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Eq. 3.34 can also be obtained from general conservation equation given in Chapter 2 (Eq. 2.5) re-
peated here for conv=nience:

v =2 - =
3otV v V4V .J, =Sy =0 (3.39)
swhere
W . property per unit volume of material,
j : flow of property per unit of area and time through the
¥ control surface bounding the control volume,
Sy : generation of property per unit volume and time,
v - flow velocity.

In the present case, the body is at rest, i.e, v=0. Considering Fig. 3.7 and interpreting in
Eq. 3.39

17 : as the intarnal energy, pu,
J. : as the heat flux, and
v
Sy : as the heat generation rate g,

i

g" =—kV

Figure 3.7 Control volume to be
used with general local conserva-
tion equation.

we obtain:

apu ha S/ 1
o1 +V.qg —-g =0 . (3.40)

f

Using the general form of Fourier's law (Eq. 3.7) and knowing that:
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Opu _ 9t
— =Py, (3.41)
Eg. 3.40 becomes:
- hit 4 #t
: VkV.it+gq =cpg—;. (3.42)

This equation is the same as Eq. 3.34.

The derivation of the general conduction equation can also be carried out in cylindrical coordinate
system (r, 8, z) defined in Fig. 3.8a and spherical coordinate system (¥, ¢, 8) defined in Fig. 3.8b.
The resulting equations are:

a) Cylindrical, (r,8,z) b) Spherical, (r,¢,6)

Figure 3.3 Different coordinate systems.

Cylindrical coordinates:

10 al dt _ ot
rarkrde) + (e Ze) + S 18) v = et 6.)
Spherical coordinates:

10 (0,1 8(,. oY, 1 (81, »__. 0t
237 kr 6r)+rsm¢a¢k sin ¢ ¢)+rzsin2¢66(k66)+q =cpgz. - (3.44)

1.2.2 Initial and Boundary Conditions

The evaluation of the constants that appear in the solution of the heat conduction equation re-
quires the use of boundary and initial conditions. In the following, we will discuss the most fre-
quently encountered boundary and initial conditions.
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I Initial conditions

In transient heat conduction problems, the temperature distribution in the body under observation
should be known prior to the initiation of the transient. For example we will specify that at 7=0,
+ the temperature distribution in the body is given by #(x,y.2).

I, Boundary conditions

The boundary conditions specifies the thermal conditions applied to the boundary surfaces of the
body. For example, on the boundary surfaces we may spccify the temperature, the heat flux or the
heat transfer to a fluid by convection.

1. Prescribed boundary temperaiure condition

The temperaiure on the boundary surfaces of the body, ¢, , is imposed as illustrated in Fig. 3.9.
This temperature may be uniform and constant, a function of space and time or, a function of
space only or time only.

14

Figure 3.9 Prescribed boundary
x=1L x temperature.

2. Prescribed boundary heat flux condition

The heat flux across the boundaries is specified. This flux may be uniform and constant, a function
of space and time or, a function of space or time only. The heat flux may be removed from the
boundary surface (Fig. 3.10a) or supplied to the boundary surface (Fig. 3.10b).

If heat is removed from the bcundary (Fig. 3.10a), the application of the macioscopic energy con-
servation principle (Eq. 2.23) to a very thin layer at the boundary (see insert in Fig. 3.10a) yields:

[ du-7ida=0 (3.45)
or )
;;1 . 3‘_‘1 +;;2 . 30 =0 (3.46)

i
" -

where Z])C 4 1is the conduction heat flux and ¢
of conduction, we obtain:

, isthe prescribed heat flux. Using the Fourier's law
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a) Heat removal from boundary b) Heat addition to bounday

Figure 3.10 Prescribed heat flux at the boundary.

S # {at -
4 ca =--k\'§;) i (3.47)
we obtain:
- - n
i .(—k%) i+n.g, =0 (3 48)
- -> - = " .
Since n,. i=-1 and na.q, =q, ,the above equation becomes:
oty _ .~ e e
k(ax/ T Go- (3.49)

If the heat is supplied to the boundary (Fig. 3.10b), the same reasoning as above yields:
g) —_ L
k(ax = 9o (3.50)
If the boundary surfaces are well insulated, i.e., q: =0, Eqgs. 3.49 and 3.50 are reduced te:
ary _
( ax/ 0 (3.51)

3. Convective boundary condition

A frequently encountered situation is the one in which the bounding surfaces are in touch with a
fluid where heat is transferred from surfaces to fluid or vice versa as illustrated in Fig. 3.11. If the
heat is transferred from boundary surfaces to the fluid (Fig 3.11a), the application of the energy
conservation principle to a very thin layer at the boundary yields:

n..q, + ny.q, =0 (3.52)
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2} Heat transfer to fluid b) Heat transfer from fluid

Figure 3.11 Convection at the boundary surfaces.

»” ”

where ?]’cd is the conduction heat flux and Ecv convection heat flux. Using the Fourier law of
conduction (Eq. 3.47), Eq. 3.52 becomes:

- ! - -
" K—k%)s 1 +;1>2 -9, =0 (3.53)
or
- ég —q
k ErI il (3.54)

The above equation with theNewton's cooling law (Eq. 3.12) can be written as:
8 _h. -
q 5t) = hl-10) (3.55)

If the heat is transferred from fluid to the boundary surfaces (Fig. 3.10b), energy conservation
principle gives:

6:) "
k=] = _
, ox/ s s (3.56)
In this case g, is given by:
Gev = holto = 1,)
Substituting the above equation into Eq. 3.56 we obtain:
i

k(%) = Mt.—t,). (3.57)



3.17

4. Interface of two medium with different conductivity

When two media with conductivity &, and &, have a common interface as illustrated in Fig. 3.12,
the heat flux at this interface for each medium should be equal, i.e,,

Inteiface

Figure 3.12 Interface of two me-
dium with different conductivities.

o
-

X

q.‘",l = q;2 (3.58)

or using the Fourier's law of conduction (Eq. 3.1) we obtain:

k‘(%_;),. - k2(%_;)i (3.59)

If the contact resistance between the two media is zero, then the temperatures on both sides of
the interface are equal, i.e,,

t[; =[2,' . (360)

However, in practice the contact resistance 1s different from zero. In this case, representing the
conductance at the interface by 7, , the temperatures on both sides of the interface are related by:

qi =q:1=hg(tu—12r') - 3.61)
The contact conductance will be discussed in details in chapter on "Heat Removal from Nuclear
Reactors."
1.2.3 One Dimensional Steady State Conduction
{

In this section, we will discuss heat conduction problems where only one dimension is enough to
describe the temperature distribution. For example, the heat flow in a wall of finite thickness in x-
direction but infinite extent in the y- and z-directions or heat flow in a long cylinder with angular
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symmetry constitute one dimensional heat transfer problems. For a one-dimensional steady state
conduction heat transfer, the general conduction equations (Egs. 3.34, 3.43 or 3.44) are written

as;

Rectangular coordinates:

’ -a_( ﬂ " _
Sx kax +q =0 (3.62)
Cylindrical coordinates:
10(, 20), »_
"E'r(krar) +q =0 (3.63)
Spherical coordinates:
18 ( 201 ) -
237 kr 3,0 T4 0 (3.64)

1.2.3.1 Conduction Heat Transfer in a Slab
I. Plune wall with prescribed boundary temperatures

As tllustrated in Fig. 3.13 the wall has & finite thickness (L) but infinite extent. Both faces, located
at x =0 and x = L are kept at specificd temperatures 7, and ¢, , respectively. There is no heat

w

L T\\
\ t,
k = Const.
0 P
Figurc 3.13 Slab with prescribed
IV S — temperatures.
"—\——‘_-_‘-‘“-/-—‘-"'-

sources within the slab. Under these conditions Eq. 3.62, for a constant conductivity, reduces to
Kot e (3.65)
with boundary conditions:

x=0 (=1, (3.66)
x=L t=t,. (3.67)
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The solution of Eq. 3.65 is:
t=Ax+B (3.68)

A and B are arbitrary constants. Application of the boundary conditions allows us to determine the
+ values of the constants. The substitution of these values into Eq. 3.68 yields:

I~

7% (3.69)

The heat flux through any plane in the wall perpendicuiar to the x-axis can be determined by using
the Fourier's law of conduction:

£xy=1t,+

(3.70)

II. Multilayer wall with prescribed boundary temperatures

Figure 3.14 illustrates a wall of two layers. The thickness of the walls are L, and L, and the con-

Figure 3.14 Multilayer wall.

ductivity are &, and £, , respectively. The outside temperatures are £, and 1, | respectively. we
wish to aetermune the heat flux through the wall,

Since the steady state conditions exist, the heat flux through the layers is constant. The application
of Eq. 3.70 to layers 1 and 2 yield:

L4 [l —tz ”Ll
=k ———= —_f =g 2L
; T or IL—l,=q I (3.71)
" 1 —1 "
qg = k; zL-)_ 3 or t;— 13 = q i—z' (3.72)
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Upon addition of the above equations we obtain:

¢ = (3.73)
P
Calling:
! 1
K= (3.74)
P
Eq. 3.73 can then be written as: )
g =K{t: —13) (3.75)

where K is the cverall heat transfer coefficieat. The above discussion shows that the knowledge of
the interface temperature, £, , is not necessary to determine heat flux through the multilayer walls.

IIl. Multilayer wall bounded on each side by convecting fluids

Fig. 3.15 iliustrates a multilayer wall bounded on each side by convecting fluids. The convection
coefficients are respectively A, and A, and the temperature of the circulating fluids are ¢, and ¢, ,
respectively. We wish to determine the heat flux through the wall.

CONVECTING CONVECTING
FLUID k k. FLUID
2z

|

o
o

X

Figure 3.15 Multiiayer
wall with convection on
both sides.

The heat flux through the layers is constant and can be written as:
;

q"‘:hl(tfl—fz) aor Iﬂ—Iz:%— (376)
1
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” I,—1t
q =k12—Ll“"3— or tz—f3=z—l[,1 (3.77)
“ Ih—1 !
q = k:"f or Iy —14= %;Lz (3.78)
q" =M(ta—1r2) OF ly—lp= ?1_ (3.79)
2

Upon addition of the above equations we obtain:

" bri =1
9 =7 L: L, 1 (3.80)
Wt et
or
q =K(tn—1p) (3.81)
where
K= 1 Ly IL: 1 (382)
wte Teth

If the wall consists of n layers. the overall heat transfer coefficient will have the following form:

K= ———— (3.83)

IV, Plane wall with heat generation and prescribed boundary temperatures
The only difference between this case and the case / is the heat generation in the slab. For a con-
stant conductivity, Eq. 3.62 becomes:

—ai M —
ks z+q =0 (3.84)

with boundary conditions given by Egs. 3.66 and 3.67. The solution of the above equation is:

"

-9 .2
Hx) = T +Ax+B (3.85)

The application of the boundary conditions yields:

(3.86)



and
B=11.

Knowing A and B, the teinperature distribution in the slab is given by:

#x) = Q—L—z[% ~ (%) 2] =0+

322

(3.87)

(3.88)

V. FPlane wull with heat generation, one surface insulated the other subjected to convective heat

transfer

This case is illustrated in Fig. 3.16. The temperature distribution is given by Eq. 3.85. In this case,

the constants are determined by using the following beundary conditions:

CONVECTIVE
HEAT TRANSFER
tf

—

INSULATED
FACE

N

|

o other cooled by convection.
L —
_ ) t(x)
=0 “ox
x=1L at(x)—h[t()—r]
and are given by:
A=0

qﬂl 2 qlﬂ
B="=L*+"~-L+1t
2 TR
The temperature distribution has, therefore, the following form:

v
! lll "

(x) = Lz[l - (z)2]+%—[—‘+tﬁ

Figure 3.16 Plane wall with heat
generation; one face insulated the

(3.39)

(3.90)

(3.91)

(3.92)

(3.93)
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V1. Plane wall with heat generation and convective boundary conditions on both faces

As illustrated in Fig. 3.17, both faces of the plate are washed with a fluid at temperature £, . The
heat transfer coefficient is 4. The faces 1 and 2 are located at x =—L and x = L, respectively.

s

Heat generation rate is ¢

Figure 3.17 Plane wall with
heat generation and convective
boundaries.

)
-
|

The temperature distrituticn is again given by Eq. 3.85 subject to following boundary conditions:

x=1 - k(%%) = h[tx) - 17] (3.94)
x=—L K2 < hpwr -y (3.95)

Eq. 6.94 signify that the conduction heat transfer that arrives to the faceat x =L, — k(31/0x), is
equal to the convective heat flux that enters the fluid bulk, i.e., A{f(L) —t,]. The same boundary
condition at the face at x =—L does not have a minus sign in front of the k(2¢/ 3x) term. This
point was examined in details during the discussion of the boundary conditions in Section 1.2.2.
Using boundary conditions 3.94 and 3.95, the constants A and B appearing in Eq. 3.85 are deter-
mined as:

A=0 . (3.96)
1 _L,)
n +2k + iy (3.97)

r
I3

The temperature distribution is given by:
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I’le 2 ”’L
l(x)=g7[l—(%) :!+ii;—°+!f. (3.98)

Comparing Eqgs. 3.93 and 3.98 , we observe that the temperature distributions are the same.
Eq. 3.98 shows that the maximum temperature occurs in the midplane of the slab, 1.e. , x=0.

* Therefore, at this point the temperature gradient is zero and there is no heat flux in either direc-
tion of x-axis. Eq. 3.98 also shows that the temperature distribution in the slab is symmetrical.
When a given case nas both geometrical and thermal symmetries about x = 0, it is more conven-
ient to solve the conduction equation over the half region, i.e., for the slab under consideration
between x = 0 and x = L by using the following boundary conditions:

Jt
x=0 ———a(;‘)=0 (3 99)
x=L - -a—t-zh[f(x)wt] (3.100)
ox ! '

instead of using boundary conditions given by Eqgs. 3.94 and 3.95. This discussion also explains
why the temperature distributions given by Eqs. 3.93 and 3.98 are the same.

Example:

The fuel eiement of a pool type reactor is composed of a plate oi metallic uranium of thickness
2L, placed ir sandwich between two aluminum plates (cladding) of thickness(L: —L,). This fuel
element is illustrated in Fig. 3.18. Heat energy, due to the fission of U, , is generated in the fuel
plate at a uniform rate qm . The fission energy deposited in the cladding plaies is negligible. The
convection neat transfer ccefficient and the temperature of the fluid washing the fuei element are
h and £, , respectively. Determine the temperature distribution in the fuel element.

This is a multiregion problem that involves two governing equations. As seen irom Fig. 3.18, the
problem nas geometric and thermal symmetries with respect to the mid-plane of the fuel element.
Under these conditions, it is moie convenient to solve the problem over the half of the fuel ele-
ment extending from x = 0 tox = L, . Indicating by 1 the fuel region and by 2 the cladding region,
the heat conduction equations are written as:

Fuel:
d*ty, q
:i}—z—'i-"lzl—:() for 0Zx<I[L, (3.101)
Cladding:
“ l_o  for Ly<x<L
de = or 1 SX5 Lo (3102)
with boundary conditions given by:
x=0 auG) _ (3.103)



|

A
/.

7

Figure 3.18 Fuel element of a pool type reactor,

x=1L, Hh(x) = tr(x)
d
JC=L| kldtcliix)=k2 Z)(Cx)
dt
x=1L, —k, :i)(CX) = h{(x} - 4]

Solutions of Eqgs. 3.101 and 3.102 are given by:

quz

+Ax+ B,

and

L(x)=Cx+D..
Combining Eqs. 6.103 through 6.109, we obtain four equations;
A=0,

" 2
—qz—’f"-+B=CL2 +D.
1
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(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)



3.26

-q"Ly = k;C, 3.111)
—k2C=h(CL7, +D—tf). (3.112)

! The solution of these equations yields the values of A, B, C and D. The temperature distribution
throughout the fuel element is ther given by:

Fuel:
-EH (1) o) BB )
H(x) = Z [1 i, 2 e )+ = L1+hL2 +1y (3.113)
Cladding:
__ﬂi[i-_éa( ﬁ”
t2(x) = L L .1+hL2 + (3.114)

1.2.3.2 Conduction in Cylindrical Geometry

1. Long hollow cylinder with prescribed tempcrature on the walls

Consider the long hollow cylinder illustrated in Fig. 3.19 with inner and outer radii 7, and r, | re-
spectively. The temperature of the inner wall is £, and that of the outer wall is £,. There is no heat
generation within the cyiinder and the conductivity of the material is constant. We wish to deter-
" - mine the temperature variation in the cylinder wall.

Figure 3.19 Long hallow cylinder.

The application of Eq. 3.63 to the present situation yields:

%(rj—i) -0 (3.115)
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with boundary conditions:

r=r; =14 (3-116)
r=r; 1= (3.117)

The integration of Eq. 3.115 gives:
(r)=Alnr+B (3.118)

where A and B can be easily determined by using boundary conditions:

l.— 4

= 3.119
In(ry/ry)’ ( )
Inr
B=4H -t~ t)———. 3.120
The temperature distribution is then given by:
_ 1 — r
(=t + —=———In (3.121)

ln(r;/r;) _’T

Based on the above temperature distribution, the linear heat flux (or heat flux per unit length)
through a surface located at r can be easily calculated:

’=i=— -4!-=_ l&= __[_1_"'[2
9=7 k2nrdr k2m r-"ln(rz =) nkln(rz/rl)

(3.122)

1. Hollow cylinder with convective boundaries on both walls

Fig. 3.20 is a sketch of a pipe in which a fluid at temperature ¢, circulates. Heat is transferred
from this fluid to the pipe by convection, through the pipe wall by conduction then to the fluid
outside again by convection. The temperature of the fluid outside is £, . What is the linear heat
flux through the wall of the pipe.

Under steady state conditions, the linear heat flux is constant and we can write:
Inner surface of the pipe:

1

=21 hy(th —t —fy=——
g =2mym(tp—t;) or Ia-—1 T (3.123)
Through the wall (Eq. 3.127):
;o hh—t q'
= 2mk———— 1 —ty= _
1=ty & T T G/ (3.124)

Quter surface of the pipe:



k = const

71 2

q’=27tl"2hz(tz—lﬂ) or !

Upon addition of Eq. 3.123, 3.124 and 3.125, we obtain:

' n—In
q = 1 ln(ru'r.) _l_
27!‘?‘“'1; 21tk 2nr1h;
or
q =K(th ~tpn)

where K is the overall heat transfer coefficient and has the following form:

K= L

1 la{rs /1) 1
nr 2nk 2rri by

Ill . Long Solid cylinder with heat generation and prescribed boundary temperature

3.28

Figure 3.20 Pipe with
convective boundaries.

q

£

i=lp= .
‘ 12 27!?'2”12

(3.125)

(3.126)

(3.127)

(3.128)

The mathematical formulation of the problem is given by Eq. 3.63. Assuming that the conductivity

of the cylinder material is constant, this equation becomes:

: Fal) oo

(3.129)
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The boundary conditions are:

r=90 m=0 (3.130)
ar
r=r, t=1. (3.131)

The solution of Eq. 3.129 is:

"

«r) =—%~Er’ +Alnr+B (3.132)

The application of boundary conditions shows that:

A=0 (3.133)
B=t,+1-n (3.134)
ITACE '

‘The temperature distribution is then given by:

-

(r) = qr”[ (r—:)zJ—Hw (3.135)

IV . Solid cylinder with heat generation and convective boundary condition

In this case the boundary conditions will be:

,e0 dgr’) (3.136)
e -k(%) = K -1 (3.137)

where £, is the temperature of the convecting fluid. Using the above conditions we obtain for the
integration constants 4 and 5 the following:

A=0 (3.138)

Hr "

q q
B=7r5 +~—ro+tf (3.139)

The temperature distribution is given by:
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The boundary conditions are:

B an _, (3.130)
dar
r=ro t=tw (3‘131)

,

The solution of Eq. 3.129 is:

t(r)=—3—kr2 +Alnr+B  (3.132)

The application of boundary conditions shows that:

A=0 (3.133)
B=:w+q—r2 . (3.134)
ak °
The temperature distribution is then given by:
B qmrgr _ L) 2
Kr)= m |_1 (.ro +1, (3.135)

IV . Solid cylinder with heat generation and convective boundary condition

In this case the boundary conditions will be:

_ aw(r) _
r=0 =0 (3.136)
r=r, —k(%%l) = h[{r) - 1] (3.137)

where £, is the temperature of the convecting fluid. Using the above conditions we obtain for the
integration constants A and B the following:

A=0 (3.138)
AP
B= 4kr,,+2hro+tf (3.139)

The temperature distribution is given by:
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”’r% 2 Iﬂro
1(r)=—q4k [1—(’,—:}) ]+q2h + 1. (3.140)

Example

* Consider the long cylinder sketched in Fig. 3.21. The outer surface cf the cylinder at r=r; is

/,
{

-

//// =

. Figure 3.21 Long hollow cylin-
; . e, .
Uit der with heat generation.
| INSULATION |

perfectly insulated whereas the inner surface at » = r,is cocled by convection. Heat is generated
uniformly in the cylinder at a rate of ¢ . Determine the temperature distribution in the cylinder at
the point where the coolant temperature is 74, . The conductivity of the cylinder material is
constant.

To determine the temperature distribution in the wall region, Eq. 3.63 should be solved subject to
the following boundary conditions:

In

di(r ;
, k# - WKP-1] (3.141)
a0 _,

r=n dr

(3.142)

The solution of Eq. 3.63 is given by Eq. 3.132. The integration constants are determined by using
the above boundary conditions. The use of Eq. 3.142 gives:
;

it

L AN
SapT T AR =0 (3.143)

or
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A= %r% ' (3.144)
and Eq. 3.141 yields:
L q2 :f h( I+ dorinr +B- ) (3.145)
or )
F 3 2 " z
B:g,_.;_‘(%— 1) +q2,:‘(1 :—imri) +1y (3.146)
~ 1 1

Substituting Eqs. 3.144 and 3.146 into Eq. 3.132, we obtain the temperature distribution as:

fl‘l ’H’ Iﬂ r q m r% 1 r%
ur ———r + lnr+ [ 2 l)+ [ —lnr)+t ) 3.147
¢) 2h 2k 2 @t GA4D

1.2.4 One Dimensional Time Dependent Conduction

In this section we will discuss transient conduction problems in a system. Transient heat transfer
conditions are achieved when heat generation is suddenly started or stopped, or the boundary
conditions of a heated body are suddenly changed. Under these conditions, the temperature at
each point in the body will start changing. These changes will continue until a new equilibrium is
reached between the energy created in the body and the energy removed from the body, or until
an equilibrium temperature is reached between the hot body and the surrounding. To determine
the temperature distribution within a solid during a transient process, we should solve general
conduction equation (Eqs. 3.34 or 3.43, or 3.44) with appropriate boundary and initial conditions.
For one dimensional geometry these equations reduce to:

Rectangular coordinates:

3 (,31 _ ot
ax(kax) +q =cp T (3.148)
Cylindrical coordinates:
18(,,0) , 7 _ o081
rar(k’ar) +q =cpz; (3.149)
Spherical coordinates: .
t
p ar(krza ) +q = cpat . (3.150)

In certain class of problems, the spatial distribution of the temperature in solid body stays nearly
uniform during the transient. Under this condition, we may assume that the temperature in the
body is independent of space and varies only with time. The analysis of heat transfer with such an
assumpticn is called the "lumped system analysis." Since the temperature is a function of time
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only, the heat transfer analysis can be easily conducted. Because its simplicity, in this section the
discussion of the transient heat transfer will start with lumped system analysis.

1.2.4.1 Lumped System Approach- System with High Conductivity

Lumped system approach assumes that the thermal conductivity of the solid object is so great that
during a transient heat transfer process the temperature gradient within the object is small, i.e., the
temperature, for all practical purposes, can be considered as uniform at any instant. To illustrate
this approach, two examples that consist the immersion of a hot object in a quenching bath of infi-
nite extent, i.e. , constani temperature and a solid object in which heat is suddenly generated and
placed in a constant temperature surrounding will be considered. Both cases will be discussed hy
using macroscopic energy equation (2.23) which for the present case is written as:

dﬁ;‘fvpudV=-L z.al’M+Iyq"'dV (3.151)
where _
u internal energy per unit mass
p density
n unit normal vector to the bounding surface
- heat flux applied to the bounding surface
q" heat generation rate

Assuming that p, uand ¢ are constant throughout the solid body , q” is constant over the
bounding surface of the body and knowing that:

du _ oydt
de‘r_CPVd‘C (3.152)
Eq. 3.151 becomes:
oVl =—47.3" +vq (3.153)

d

=l

where 7 and A are the volume and bounding surface area of the solid obiect, respectively. If
- "

n.q is positive, heat flows out of the object, if it is negative, heat flows into the object.
L. Immersion of a high thermal conductivity solid body in a quenching bath

Consider a solid body at an initial temperature !, immersed suddenly in a quenching bath of infi-
nite extent, i.e. , at a constant temperature Ir as sketched in Fig. 3.22. Assuming that the material
of the body has a high thermal conductivity, the gradient within the body will be small, conse-
quently, the temperature distribution will be uniform and almost equal to the surface temperature.
The heat transfer from tl"l'C body to the surrounding is controlled by convection. Under these con-
ditions, the termA4 71 . 3 Eq. 6.153 is qusitive and given by:

-

An.q =Aq.=Ah(l-1). (3.154)
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QUENCHING
| FLUID l,

Figure 3.22 Solid object
in an infinite quenching
bath.

There is no heat generation in the body. Therefore, Eq. 6.153 becomes:

dt __Ane,

dt ch(l L (3.155)
with initial condition:

t=0 t=t;. (3.156)

Introducing the following variable change:

0=t-1 (3.157)
Eq. 3.155 can be written as:
do _ Ah. ,
e CpVe (3.158)
with boundary condition:
9.-=t,---tf. (3159)

The solution of Eq. 3.158 subject to initial condition is given by:

0=0,exp (—fpi;/‘t) (3.160)
or :
F [—1t= (1 — l)exp (—-‘::;/'c) . (3.161

The quantity cpV/Ah, the "thermal time constant" for the geometry under consideration and has
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the dimension of time. The numerator of the time constant, cp/V/, is called is called the "lumped
thermal capacitance,” and 1/4A. is known as the convective resistance.

Let us give a closer look the exponent of Eq. 3.161 and rearrange it as follows:

hedt _hoV k 1A* _ h.VazA?
epV  kACP 12 kA V?

(3.162)

with o = k/cp. We observe that the time constant does not coatain the thermal conductivity; we
introduced it by multiplying the numerator and the denominator of Eq. 3.162 by the thermal con-
ductivity, k. The ratio of volume to bounding surface area of the body is called the "characteristic
length.” i.e.,

L. = (3.163)

nis

With this definition, Eq. 3.162 becomes:

hoAt _ hlecat
oV kL%

(3.164)

(a) Bi < 0.1 (b} 0.l < Bi=1 (c! Bi > 1

Figure 3.23 Relationship between the Biot number
and the temperature profile.

The term A.L./k (= h.VikA) is known as “Biot number." The term at/L? (= atA4*/V?) is
known as "Fourier number." The Biot number is a dimensionless ratio of convection coefficient to
thermal conductivity and gives an indication of the temperature drop within the solid body com-
pared to the temperature difference between the solid surface and the fluid. If the Biot number:
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Bi=%L¢=-’1kSAZSO.1 (3.165)
then Eq. 6.161 can be used with little error. Therefore, the criterion for the use of lumped system
approach is appropriate when Biot number is less than 0.1. The effect of the Biot number on the

+ temperature distribution in the sofid body is illustrated in Fig. 3.23. Fig. 3.23a shows that when
Bi < 0.1, the temperature distribution is nearly flat and the convection heat transfer coefficient is
the controlling parameter. Fig. 3.23¢ shows that Bi >> 1, the conduction process controls the
heat transfer. In turn, Fig. 3.23b shows that for 0.1 < Bi < 1 both conduction and convection
should be accounted for.

The Fourier number is a dimensionless time parameter. It represents the ratio of heat transfer by
conduction to the energy storage rate within the body. In terms of dimensionless numbers,
Eq. 3.161 is written as:

!—tr=(t-1;)exp (—Bi.Fo). (3.166)

IT . Sudden heat generation in a solid body

Consider the solid body sketched in Fig. 3.24. Initially the body is in equilibrium with the sur-
rounding which has an infinite extent. The temperature of the surrounding is ¢ and it is constant.
At time zero, heat is suddenly generated in the body at a rate of qm W/m® . The conductivity of
the material is great and heat transfer from the body to the surrounding is controlled by convec-
tion only. We wish to determine the variation of the body temperature with time.

Lumped system approach can also be used in this case to determine the temperature history of the

SURROUNDING

Figure 3.24 Solid body with
heat generation,

A

7]

bedy. The application of Eq. 3.153 to the present case yields:

; di_ _Ahe, .G
o G (3.167)

or
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”

a0 _ _dheg 9
e ch9+ p (3.168)

where 0 = f — [ . The initial condition is:

=0 t=1 or 6=0 (3.169)
The solution of Eq. 3.168 is given by:
( Ahc -\ qu
G—Bexp\ ch") +Ahc' (3.170)

Using the initial condition, the constant, B, is determined as:

(3.171)

Substituting Eq. 3.171 into Eq. 3.170 and knowing that © = 7 — 1 , we obtain for the variation of
the temperature with tiine the following expression:

gV (_Ah; )
== 1- - . 3.172
/ Ah,,[ exP\ cpl/t ( )
In the above solution, if t = 0, = I; if 1 — 0, the temperature of the body becomes:
B | quﬂ
=l (3.173)

1.2.4.2 Systems with High Surface Conductance

We will discuss now the systems where the convection heat transfer coefficient (film conductance)
is very high. Therefore, the surface temperature of the object, for all practical purposes, is equal
to the temperature of the surrounding fluid. Because of the shape of the fuel rods used in nuclear
reactors, we will only consider transient conduction in solid cylinders. We will assume that the
cylinder is infinitely long and axial symmetry exists. Under these conditions, the transient problem
will have two independent vanables: radial coordinate, r, and time, t. In the absence of heat
sources and constant conductivity, the heat conduction equation (Eq. 3.148) reduces to:

ot _ (@...t. Lﬂ) |
3= N37 7o) (3.174)

¥

i
The solution of this equation can be obtained by using the method of separation of variables.

Therefore, a solution in the following form will be sought:
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«r,7) =R()T(7). (3.175)

Substituting Eq. 3.175 into Eq. 3.174, we obtain:
18T _1 (am 1aR) 22
4 c1_21 L2 =32, 3.176
aTot R\orr Tor ( )
A? is a separation corstant introduced because of the fact that each member of this equation is a
function of only one of the variable and that the equality between the members is only possible
when both of them are equal to the same constant. The separation constant is taken to be negative

to obtain a negative exponential solution in time.

Eq. 3.175 yields twoe ordinary differential equations:

dT

E+l’aT=O (;.177)

and
&R 1dR ,ap \
0 +rdr+). R=0. (3.178)

The solution cf these equations are:

T(t) == Aexp(-A*az) (3.179)

and
R(r) =CJI, (A1) +DY, (0.1, (3.180)

respectively. J, and ¥, are zero order Bessel functions of the first and second kind, respectively.
Since the cylinder is solid, Y, is undefined when r = 0. Consequently, to obtain a meaningfiil so-
lution to a physical prcblem, the constant D should be equal to zero. The solution of Eq. 3.174 is
then given by:

(r,7) = Bexp(-Atat)J,(Ar) (3.181)

where B = AC. The constants Band A are to be determined by initial and boundary conditions.

Consider now a solid cylinder of radius 7, subject to an initial temperature distnbution f{r) which
is symmetrical with respect to the axis of the cylinder. Assume that the temperature of the surface
of the cylinder is suddenly reduced to 0 °C (or io any other constant temperature) and maintained
at that value for all subsequent times. This is equivalent to immerse the cylinder in an infinite sur-
rounding at temperature {, with very high heat transfer coeflicient such as seen, for example, un-
der boiling liquid conditions. What is the temperature distribution in the cylinder as a function of
space and time.

The temperature distribution in the solid cylinder is given by Eq. 3.181 subject the following initial
and boundary conditions:

=0 t=f(r) (3.182)
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120 =0 at r=r,. (3.183)
The application of the boundary condition given by Eq. 3. 183 to Eq. 3.181 results in:
Jo(A7r,)=0. (3.184)

This equatior: has infinite number of roots (A, with n= 1,2, 3, ...e0) and each root correspond to

a particular solution of Eq. 3.174. The general solution of Eq. 3.174 is then given by:
t(r,7) = 2, Buexp (—A2at) Jo(A.p). (3.185)
n=1
The application of initial condition given by Eq. 3.183 to the above solution leads to:

FO) =2 BudoOont) (3.186)

Since A, 's are defined as the roots of Eq. 3.184, the set of functions:
{J(Aat)} n=12073,.. .o (3.137)

as discussed in Apperdix III, constitutes a set of orthogonal functions. The constants B,'s ap-
pearing in Eq. 3.185 can, therefore, be determined by using the properties of the orthogonal func-
tions. According 1o Appendix III, these constants are givea by:

B - 2 rf (0 Jo(har)dr
RS

(3.188)

where J, is first order Bessel function of the first kind. The final solution is obtained by substitut-
ing Eq. 3.188 into Eq. 3.186:

(r,7) = 1-2_2 Zl exp (—AZar)

Jo(An?)

20ur) I 0 (Mo (Aar)dr . (3.189)

1.2.4.3 System with Finite Internal Conductivity and Surface Conductance

In this case both conductances (internal and surface) have finite values. The long cylinder dis-
cussed in the previous section is now immersed in a fluid of finite heat transfer coefficient h. The
temperature distribution is still given by Eq. 3.181. The only difference is in the boundary condi-
tions;

=0 t=f(r) (3.190)
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4 h
> —_— e — -
120 Gy Ar=re (3.191)

In Eq. 3.191 it is assumed that ;= 0. This assumption does not affect the generality of the solu-
tion. If #, were different from zero, we would simply change the reference temperature and write:

* 0 =1t— 1y . This change would give the same result as ;= 0. The application of boundary condi-
tion given by Eq. 3.191 leads to:

Bexp(— ;Lzm)[ajo(’")] - _%[B exp(-A2at),(A )], (3.192)
Knowing that;
-‘M’a(:‘—’)= -AJi(Ar) (3.193)
Eg. 3.192 becomes: FOr) _
JI\AT} _ iFy 1
?\.roJ—“‘“""—o(l il (3.194)

The above equation has infinite number of roots (A, with = 1,2, 3, ......00) and each root corrz-
sponds to a particular solution of Eq. 3.174. The general solution is given by:

Wr,7) = f.l Bexp (-Alat) J,(A.r) (3.195)

-~ where B, are constants to be determired. Upon application of initial condition given by
Eq. 3.190, we obtain:

flry= E} B.Jo(Arr) . (3.196)
Referring to Appendix II and comparing Eqs. 3.195 and II1.31, we conclude that the set:

{Jo(Aar)} (3.197)

constitutes a set of orthogonal functions. The constants 3, in Eq. 3.196 can then be determined
by using the properfles of orthogonal functions and according to II1.32 in Appendix III have the

following form:
~ %I; T (A.P)dr
J%(;\rnro) +J’%O\'n‘r0) -

(3.198)

Finally the temperatuye distribution is given by:

Jo(Anr)
Jz(ln o)+J1(ln o)

r, ‘t) = i p(-Aiaz) I rf(r) Jo(Xar) dr (3.199)
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1.2.4.4 System with Finite Internal Conductivity and Surface Conductance and Subject
to Sudden Heat Generation

A long solid cylinder of radius ¥, has an initial temperature distribution f*(¥) which is symmetri-
cal with respect to the axis of the cylinder. For times # > 0 heat is generated in this cylinder at a

* constant rate of qm Watt/m® . The boundary surface of the cylinder is subject to convection with
an infinite surrounding at temperature iy = G °C. The convection heat transfer coefficient is con-
stant and equal to A.. Determine the temperature distribution as a function of space and time in
the cylinder.

The difference between this case and the two cases studied above is the sudden heat generation in
the solid cylinder. Under this condition, the mathematical formulation of the problem is written as:

ot 1ot

9 _lot -
2t et T dae (3.200)
The initial and boundary conditions are specified as:
1=0 t=f*(r) for 0<r<y,, (3.201)
120 - kaé(rr) =h.Hry for r=r,. (3.202)

Moreover, the temperature should have & firiie value at 7 = 0.

Because of the presence of the term qmlk , Eq. 3.200 is a ncnhomogeneous differential equation
and its solution can not be obtaired by the method of separation of variables. To get around of
this difficulty, we will assume that the solution of this equation has the following form:

Hr,D)=t(r, D) +1,(r). (3.203)

Substituting Eq. 3.203 into Eq. 3.200, we obtain:

Oy 10t 104 _ 9, 19t 4
or TrFE 9t art Tor k- (3.204)

Since the left hand side of this equation is a function of r and t and the right hand side is a func-
tion of r only, the equality of both sides is only possible if they are equal to the same constant. If
this constant is different from zero, we still obtain a nonhomogeneous equation. The only possibil-
ity toward a solution is that this constant be equal to zero. Therefore, Eq. 3.204 yields two differ-
ential equations:

o 9 _
+3=0 (3.205)

and
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Oy 10t 10ty _
7 Far —ope =0 (3.206)
An examination of the above equations shows that the problem is split into a steady state problem
* for t.(r), (Eq. 3.205), and into a homogeneous transient problem for #,(r, t), (Eq. 3.206). The
nonhomogeneity g /k is included in the steady state problem whereas the transient nature of the
problem is included in the homogeneous equation. The initial and boundary conditions for
Eqs. 3.205 and 3.206 are obtained by combining Eqs. 3.203, and Eqgs. 3.201 and 3.202:

=0 1(r,0) = ty{r,0) + 1,(r) (3.207)
120 - ka Wr) ka £(r) =hty(r,0)+ht(r) atr=r,. (3.208)
or or
Since
{r,0)=1(r) (3.209)
Eq. 3.207 becomes:
=0 Ln0y="(N-1.(N=1(r). (3.210)
Eq. 3.208 can be written as:
120 at"(r Y -hty(r,0)= ka t’(r) +ht(r) atr=r, (3.211)

We can easily see that the above equality is only possible if both sides are equal to ths same cen-
stant and this constant can not be anything else but zero. Consequently, the boundary condition
given by Eq. 3.211 becomes:

a”(') =ht(r) atr=r, (3.212)

and
120 - k% =ht(r,1) atr=r, (3.213)

Eq. 3.212 constitutes the boundary condition for Eq. 3.205, and Eqs. 3.210 and 3.213 constitute
the initial and boundary conditions for Eq. 3.206.

The solution of Eq. 3.205, subject to boundary condition specified by Eq. 3.212, is given by
Eq. 3.140 with £;=0:

B qm , 2 q.mro
t,(r) = E[l—(a) ]+7 (3.214)
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In turn, the solution of Eq. 3.206, subject to initial and boundary conditions specified with
Eqs. 3.210 and 3.213, is given by Eq. 3.199. Therefore the final solution is:

"

{r,x) =t (r) +tp(r,7) = 4k[1 - (rl) 2] + qz}:o

Jo(An?)
J2(Aato) + J3(Auro) 7

%i exp (A2a) [” o eWeOundr (3.215)

where f(#) is defined with Eq. 3.210.

If initially, the cylinder were in equilibrium with surrounding, /() would be zero and /() would
be:

J(B)=~1,(r). (3.216)

Under this condition the temperature distribution is given by:

ol 2 "
f(r,T) = t,(r)+t,,(r,1:)= -z—k[l _(7%) :|+q7’:o

2 2 JoAa?)
- "Z_:lexp( —A2 aT)J"(JL,, ")+ S0 O)I rt(r)Jo(A.r)dr . 3.217)

In the above temperature distribution when 7 — oo , the solution tends toward the steady state
temperature distribution. When 1 = 0, the second term of the equation is nothing else but the de-
velopment in series of the first term, £;(r). Therefore #(r, 0) = 0, this is the initial condition.

Fig. 3.25 compares for a given time, 1, the transient temperatures with steady state
temperatures. This figure shows that at each time, 1, the steady state temperatures, £,(7), are sub-
tracied by an amount of #4(r, T) to obtain the transient temperature distribution, f(r, 1}.
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t,(r,7)

t(r,1)

Figure 3.25 Comparison of the transient and steady state temperatures for a

given time.
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